Janumet XR康諾胰 XR

Janumet XR

metformin + sitagliptin

Manufacturer:

MSD

Distributor:

Zuellig
/
Agencia Lei Va Hong
The information highlighted (if any) are the most recent updates for this brand.
Full Prescribing Info
Contents
Sitagliptin, metformin hydrochloride.
Description
50 mg/500 mg tablets are light blue, bi-convex oval, film-coated tablets with "78" debossed on one side.
50 mg/1000 mg tablets are light green, bi-convex oval, film-coated tablets with "80" debossed on one side.
100 mg/1000 mg tablets are blue, bi-convex oval, film-coated tablets with "81" debossed on one side.
JANUMET XR tablets contain two oral antidiabetic medications used in the management of type 2 diabetes: sitagliptin and metformin hydrochloride extended-release.
Action
Pharmacology: Mechanism of Action: JANUMET XR: JANUMET XR tablets combine two antidiabetic medications with complementary mechanisms of action to improve glycemic control in adults with type 2 diabetes: sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, and metformin hydrochloride extended-release, a member of the biguanide class.
Sitagliptin: Sitagliptin is a DPP-4 inhibitor, which exerts its actions in patients with type 2 diabetes by slowing the inactivation of incretin hormones. Concentrations of the active intact hormones are increased by sitagliptin, thereby increasing and prolonging the action of these hormones. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are released by the intestine throughout the day, and levels are increased in response to a meal. These hormones are rapidly inactivated by the enzyme DPP-4. The incretins are part of an endogenous system involved in the physiologic regulation of glucose homeostasis. When blood glucose concentrations are normal or elevated, GLP-1 and GIP increase insulin synthesis and release from pancreatic beta cells by intracellular signaling pathways involving cyclic AMP. GLP-1 also lowers glucagon secretion from pancreatic alpha cells, leading to reduced hepatic glucose production. By increasing and prolonging active incretin levels, sitagliptin increases insulin release and decreases glucagon levels in the circulation in a glucose-dependent manner. Sitagliptin demonstrates selectivity for DPP-4 and does not inhibit DPP-8 or DPP-9 activity in vitro at concentrations approximating those from therapeutic doses.
Metformin hydrochloride: Metformin is a biguanide that improves glycemic control in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. Metformin does not produce hypoglycemia in either patients with type 2 diabetes or healthy subjects except in certain circumstances (see Bullous Pemphigoid under Precautions) and does not cause hyperinsulinemia. With metformin therapy, insulin secretion remains unchanged while fasting insulin levels and day-long plasma insulin response may actually decrease.
Pharmacodynamics: Sitagliptin: In patients with type 2 diabetes, administration of sitagliptin led to inhibition of DPP-4 enzyme activity for a 24-hour period. After an oral glucose load or a meal, this DPP-4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active GLP-1 and GIP, decreased glucagon concentrations, and increased responsiveness of insulin release to glucose, resulting in higher C-peptide and insulin concentrations. The rise in insulin with the decrease in glucagon was associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal.
Sitagliptin and Metformin hydrochloride Co-administration: In a two-day study in healthy subjects, sitagliptin alone increased active GLP-1 concentrations, whereas metformin alone increased active and total GLP-1 concentrations to similar extents. Co-administration of sitagliptin and metformin had an additive effect on active GLP-1 concentrations. Sitagliptin, but not metformin, increased active GIP concentrations. It is unclear what these findings mean for changes in glycemic control in patients with type 2 diabetes.
In studies with healthy subjects, sitagliptin did not lower blood glucose or cause hypoglycemia.
Cardiac Electrophysiology: In a randomized, placebo-controlled crossover study, 79 healthy subjects were administered a single oral dose of sitagliptin 100 mg, sitagliptin 800 mg (8 times the recommended dose), and placebo. At the recommended dose of 100 mg, there was no effect on the QTc interval obtained at the peak plasma concentration, or at any other time during the study. Following the 800-mg dose, the maximum increase in the placebo-corrected mean change in QTc from baseline at 3 hours postdose was 8.0 msec. This increase is not considered to be clinically significant. At the 800-mg dose, peak sitagliptin plasma concentrations were approximately 11 times higher than the peak concentrations following a 100-mg dose.
In patients with type 2 diabetes administered sitagliptin 100 mg (N=81) or sitagliptin 200 mg (N=63) daily, there were no meaningful changes in QTc interval based on ECG data obtained at the time of expected peak plasma concentration.
Clinical Studies: The co-administration of sitagliptin and metformin immediate-release has been studied in patients with type 2 diabetes inadequately controlled on diet and exercise and in combination with other antidiabetic medications.
There have been no clinical efficacy or safety studies conducted with JANUMET XR to characterize its effect on hemoglobin A1c (A1C) reduction. Bioequivalence of JANUMET XR tablets with co-administered sitagliptin and extended-release metformin tablets has been demonstrated for all tablet strengths (see Pharmacokinetics as follows).
Metformin Extended-Release Compared to Metformin Immediate-Release in Patients with Type 2 Diabetes: In a multicenter, randomized, double-blind, active-controlled, dose-ranging, parallel group trial extended-release metformin 1500 mg once daily, extended-release metformin 1500 mg per day in divided doses (500 mg in the morning and 1000 mg in the evening), and extended-release metformin 2000 mg once daily were compared to immediate-release metformin 1500 mg per day in divided doses (500 mg in the morning and 1000 mg in the evening). This trial enrolled patients (n = 338) who were newly diagnosed with diabetes, patients treated only with diet and exercise, patients treated with a single anti-diabetic medication (sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, or meglinitides), and patients (n = 368) receiving metformin up to 1500 mg/day plus a sulfonylurea at a dose equal to or less than one-half the maximum dose. Patients who were enrolled on monotherapy or combination antidiabetic therapy underwent a 6-week washout. Patients randomized to extended-release metformin began titration from 1000 mg/day up to their assigned treatment dose over 3 weeks. Patients randomized to immediate-release metformin initiated 500 mg twice daily for 1 week followed by 500 mg with breakfast and 1000 mg with dinner for the second week. The 3-week treatment period was followed by an additional 21-week period at the randomized dose. For HbA1c and fasting plasma glucose, each of the extended-release metformin regimens was at least as effective as immediate-release metformin. Additionally, once daily dosing of extended-release metformin was as effective as twice daily dosing of the immediate-release metformin formulation.
Pharmacokinetics: JANUMET XR: The results of a study in healthy subjects demonstrated that the JANUMET XR (sitagliptin and metformin HCl extended-release) 50 mg/500 mg and 100 mg/1000 mg tablets are bioequivalent to co-administration of corresponding doses of sitagliptin and metformin hydrochloride extended-release.
Bioequivalence between two JANUMET XR 50 mg/500 mg tablets and one JANUMET XR 100 mg/1000 mg tablet was also demonstrated.
After administration of two JANUMET XR 50 mg/1000 mg tablets once daily with the evening meal for 7 days in healthy adult subjects, steady-state for sitagliptin and metformin is reached by Day 4 and 5, respectively. The median Tmax value for sitagliptin and metformin at steady state is approximately 3 and 8 hours postdose, respectively. The median Tmax value for sitagliptin and metformin after administration of a single tablet of JANUMET is 3 and 3.5 hours postdose, respectively.
Absorption: JANUMET XR: After administration of JANUMET XR tablets with a high-fat breakfast, the AUC for sitagliptin was not altered. The mean Cmax was decreased by 17%, although the median Tmax was unchanged relative to the fasted state. After administration of JANUMET XR with a high-fat breakfast, the AUC for metformin increased 62%, the Cmax for metformin decreased by 9%, and the median Tmax for metformin occurred 2 hours later relative to the fasted state.
Sitagliptin: The absolute bioavailability of sitagliptin is approximately 87%. Co-administration of a high-fat meal with sitagliptin had no effect on the pharmacokinetics of sitagliptin.
Distribution: Sitagliptin: The mean volume of distribution at steady state following a single 100-mg intravenous dose of sitagliptin to healthy subjects is approximately 198 liters. The fraction of sitagliptin reversibly bound to plasma proteins is low (38%).
Metformin hydrochloride: Distribution studies with extended-release metformin have not been conducted; however, the apparent volume of distribution (V/F) of metformin following single oral doses of immediate-release metformin hydrochloride tablets 850 mg averaged 654 ± 358 L. Metformin is negligibly bound to plasma proteins. Metformin partitions into erythrocytes, most likely as a function of time. At usual clinical doses and dosing schedules of metformin hydrochloride tablets, steady-state plasma concentrations of metformin are reached within 24-48 hours and are generally <1 mcg/mL. During controlled clinical trials of metformin, maximum metformin plasma levels did not exceed 5 mcg/mL, even at maximum doses.
Metabolism: Sitagliptin: Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination.
Following a [14C]sitagliptin oral dose, approximately 16% of the radioactivity was excreted as metabolites of sitagliptin. Six metabolites were detected at trace levels and are not expected to contribute to the plasma DPP-4 inhibitory activity of sitagliptin. In vitro studies indicated that the primary enzyme responsible for the limited metabolism of sitagliptin was CYP3A4, with contribution from CYP2C8.
Metformin hydrochloride: Intravenous single-dose studies in normal subjects demonstrate that metformin is excreted unchanged in the urine and does not undergo hepatic metabolism (no metabolites have been identified in humans) or biliary excretion. Metabolism studies with extended-release metformin tablets have not been conducted.
Excretion: Sitagliptin: Following administration of an oral [14C]sitagliptin dose to healthy subjects, approximately 100% of the administered radioactivity was eliminated in feces (13%) or urine (87%) within one week of dosing. The apparent terminal t½ following a 100-mg oral dose of sitagliptin was approximately 12.4 hours and renal clearance was approximately 350 mL/min.
Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin. The clinical relevance of hOAT-3 in sitagliptin transport has not been established. Sitagliptin is also a substrate of p-glycoprotein, which may also be involved in mediating the renal elimination of sitagliptin. However, cyclosporine, a p-glycoprotein inhibitor, did not reduce the renal clearance of sitagliptin.
Metformin hydrochloride: Renal clearance is approximately 3.5 times greater than creatinine clearance, which indicates that tubular secretion is the major route of metformin elimination. Following oral administration, approximately 90% of the absorbed drug is eliminated via the renal route within the first 24 hours, with a plasma elimination half-life of approximately 6.2 hours. In blood, the elimination half-life is approximately 17.6 hours, suggesting that the erythrocyte mass may be a compartment of distribution.
Specific Populations: Renal Impairment: JANUMET XR: JANUMET XR should not be used in patients with renal impairment (see Contraindications and Vitamin B12 Levels under Precautions).
Sitagliptin: An approximately 2-fold increase in the plasma AUC of sitagliptin was observed in patients with moderate renal impairment, and an approximately 4-fold increase was observed in patients with severe renal impairment including patients with end-stage renal disease (ESRD) on hemodialysis, as compared to normal healthy control subjects.
Metformin hydrochloride: In patients with decreased renal function (based on measured creatinine clearance), the plasma and blood half-life of metformin is prolonged and the renal clearance is decreased in proportion to the decrease in creatinine clearance.
Hepatic Impairment: Sitagliptin: In patients with moderate hepatic impairment (Child-Pugh score 7 to 9), mean AUC and Cmax of sitagliptin increased approximately 21% and 13%, respectively, compared to healthy matched controls following administration of a single 100-mg dose of sitagliptin. These differences are not considered to be clinically meaningful.
There is no clinical experience in patients with severe hepatic impairment (Child-Pugh score >9).
Metformin hydrochloride: No pharmacokinetic studies of metformin have been conducted in patients with hepatic impairment.
Gender: Sitagliptin: Gender had no clinically meaningful effect on the pharmacokinetics of sitagliptin based on a composite analysis of Phase I pharmacokinetic data and on a population pharmacokinetic analysis of Phase I and Phase II data.
Metformin hydrochloride: Metformin pharmacokinetic parameters did not differ significantly between normal subjects and patients with type 2 diabetes when analyzed according to gender. Similarly, in controlled clinical studies in patients with type 2 diabetes, the antihyperglycemic effect of metformin was comparable in males and females.
Geriatric: Sitagliptin: When the effects of age on renal function are taken into account, age alone did not have a clinically meaningful impact on the pharmacokinetics of sitagliptin based on a population pharmacokinetic analysis. Elderly subjects (65 to 80 years) had approximately 19% higher plasma concentrations of sitagliptin compared to younger subjects.
Metformin hydrochloride: Limited data from controlled pharmacokinetic studies of metformin in healthy elderly subjects suggest that total plasma clearance of metformin is decreased, the half life is prolonged, and Cmax is increased, compared to healthy young subjects. From these data, it appears that the change in metformin pharmacokinetics with aging is primarily accounted for by a change in renal function.
As is true for all patients, JANUMET XR treatment should not be initiated in geriatric patients unless measurement of creatinine clearance demonstrates that renal function is normal (see Lactic Acidosis and Vitamin B12 Levels under Precautions).
Pediatric: No studies with JANUMET XR have been performed in pediatric patients.
Race: Sitagliptin: Race had no clinically meaningful effect on the pharmacokinetics of sitagliptin based on a composite analysis of available pharmacokinetic data, including subjects of white, Hispanic, black, Asian, and other racial groups.
Metformin hydrochloride: No studies of metformin pharmacokinetic parameters according to race have been performed. In controlled clinical studies of metformin in patients with type 2 diabetes, the antihyperglycemic effect was comparable in whites (n=249), blacks (n=51), and Hispanics (n=24).
Body Mass Index (BMI): Sitagliptin: Body mass index had no clinically meaningful effect on the pharmacokinetics of sitagliptin based on a composite analysis of Phase I pharmacokinetic data and on a population pharmacokinetic analysis of Phase I and Phase II data.
Drug Interactions: Sitagliptin and Metformin hydrochloride: Co-administration of multiple doses of sitagliptin (50 mg) and metformin (1000 mg) given twice daily did not meaningfully alter the pharmacokinetics of either sitagliptin or metformin in patients with type 2 diabetes.
Pharmacokinetic drug interaction studies with JANUMET XR have not been performed; however, such studies have been conducted with the individual components of JANUMET XR (sitagliptin and metformin hydrochloride extended-release).
Sitagliptin: In Vitro Assessment of Drug Interactions: Sitagliptin is not an inhibitor of CYP isozymes CYP3A4, 2C8, 2C9, 2D6, 1A2, 2C19 or 2B6, and is not an inducer of CYP3A4. Sitagliptin is a p-glycoprotein substrate, but does not inhibit p-glycoprotein mediated transport of digoxin. Based on these results, sitagliptin is considered unlikely to cause interactions with other drugs that utilize these pathways.
Sitagliptin is not extensively bound to plasma proteins. Therefore, the propensity of sitagliptin to be involved in clinically meaningful drug-drug interactions mediated by plasma protein binding displacement is very low.
In Vivo Assessment of Drug Interactions: See Tables 1, 2, 3 and 4.

Click on icon to see table/diagram/image


Click on icon to see table/diagram/image


Click on icon to see table/diagram/image


Click on icon to see table/diagram/image
Indications/Uses
JANUMET XR is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus when treatment with both sitagliptin and metformin extended-release is appropriate (see Pharmacology: Pharmacodynamics: Clinical Studies under Actions).
Important Limitations of Use: JANUMET XR should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.
JANUMET XR has not been studied in patients with a history of pancreatitis. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using JANUMET XR (see Pancreatitis under Precautions).
Dosage/Direction for Use
Recommended Dosing: The dose of JANUMET XR should be individualized on the basis of the patient's current regimen, effectiveness, and tolerability while not exceeding the maximum recommended daily dose of 100 mg sitagliptin and 2000 mg metformin. Initial combination therapy or maintenance of combination therapy should be individualized and left to the discretion of the health care provider.
In patients not currently treated with metformin, the recommended total daily starting dose of JANUMET XR is 100 mg sitagliptin and 1000 mg metformin hydrochloride (HCl) extended-release. Patients with inadequate glycemic control on this dose of metformin can be titrated gradually, to reduce gastrointestinal side effects associated with metformin, up to the maximum recommended daily dose.
In patients already treated with metformin, the recommended total daily starting dose of JANUMET XR is 100 mg sitagliptin and the previously prescribed dose of metformin.
For patients taking metformin immediate-release 850 mg twice daily or 1000 mg twice daily, the recommended starting dose of JANUMET XR is two 50 mg sitagliptin/1000 mg metformin hydrochloride extended-release tablets taken together once daily.
Maintain the same total daily dose of sitagliptin and metformin when changing between JANUMET (sitagliptin and metformin HCl immediate-release) and JANUMET XR. Patients with inadequate glycemic control on this dose of metformin can be titrated gradually, to reduce gastrointestinal side effects associated with metformin, up to the maximum recommended daily dose.
JANUMET XR should be administered with food to reduce the gastrointestinal side effects associated with the metformin component. JANUMET XR should be given once daily with a meal preferably in the evening. JANUMET XR should be swallowed whole. The tablets must not be split, crushed, or chewed before swallowing. There have been reports of incompletely dissolved JANUMET XR tablets being eliminated in the feces. It is not known whether this material seen in feces contains active drug. If a patient reports repeatedly seeing tablets in feces, the healthcare provider should assess adequacy of glycemic control.
The 100 mg sitagliptin/1000 mg metformin hydrochloride extended-release tablet should be taken as a single tablet once daily. Patients using two JANUMET XR tablets (such as two 50 mg sitagliptin/500 mg metformin hydrochloride extended-release tablets or two 50 mg sitagliptin/1000 mg metformin hydrochloride extended-release tablets) should take the two tablets together once daily.
No studies have been performed specifically examining the safety and efficacy of JANUMET XR in patients previously treated with other oral antihyperglycemic agents and switched to JANUMET XR. Any change in therapy of type 2 diabetes should be undertaken with care and appropriate monitoring as changes in glycemic control can occur.
Recommendations for Use in Renal Impairment: Assess renal function prior to initiation of JANUMET XR and periodically thereafter.
JANUMET XR is contraindicated in patients with an estimated glomerular filtration rate (eGFR) below 30 mL/min/1.73 m2. Discontinue JANUMET XR if the patient's eGFR later falls below 30 mL/min/1.73 m2 (see Contraindications and Lactic Acidosis under Precautions).
Initiation of JANUMET XR in patients with an eGFR between 30 and 45 mL/min/1.73 m2 is not recommended.
In patients taking JANUMET XR whose eGFR later falls below 45 mL/min/1.73 m2, assess the benefit risk of continuing therapy and limit dose of the sitagliptin component to 50 mg once daily (see Assessment of Renal Function under Precautions).
Discontinuation for Iodinated Contrast Imaging Procedures: Discontinue JANUMET XR at the time of, or prior to, an iodinated contrast imaging procedure in patients with an eGFR between 30 and 60 mL/min/1.73 m2; in patients with a history of liver disease, alcoholism, or heart failure; or in patients who will be administered intra-arterial iodinated contrast. Reevaluate eGFR 48 hours after the imaging procedure; restart JANUMET XR if renal function is stable (see Lactic Acidosis under Precautions).
Overdosage
Sitagliptin: During controlled clinical trials in healthy subjects, single doses of up to 800 mg sitagliptin were administered. Maximal mean increases in QTc of 8.0 msec were observed in one study at a dose of 800 mg sitagliptin, a mean effect that is not considered clinically important (see Pharmacology: Pharmacodynamics under Actions). There is no experience with doses above 800 mg in clinical studies. In Phase I multiple-dose studies, there were no dose-related clinical adverse reactions observed with sitagliptin with doses of up to 400 mg per day for periods of up to 28 days.
In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring (including obtaining an electrocardiogram), and institute supportive therapy as indicated by the patient's clinical status.
Sitagliptin is modestly dialyzable. In clinical studies, approximately 13.5% of the dose was removed over a 3- to 4-hour hemodialysis session. Prolonged hemodialysis may be considered if clinically appropriate. It is not known if sitagliptin is dialyzable by peritoneal dialysis.
Metformin hydrochloride: Overdose of metformin hydrochloride has occurred, including ingestion of amounts greater than 50 grams. Hypoglycemia was reported in approximately 10% of cases, but no causal association with metformin hydrochloride has been established. Lactic acidosis has been reported in approximately 32% of metformin overdose cases (see Lactic Acidosis under Precautions). Metformin is dialyzable with a clearance of up to 170 mL/min under good hemodynamic conditions. Therefore, hemodialysis may be useful for removal of accumulated drug from patients in whom metformin overdosage is suspected.
Contraindications
JANUMET XR is contraindicated in patients with: Severe renal impairment (eGFR below 30 mL/min/1.73 m2) (see Lactic Acidosis under Precautions).
Hypersensitivity to metformin hydrochloride.
Acute or chronic metabolic acidosis, including diabetic ketoacidosis. Diabetic ketoacidosis should be treated with insulin.
History of a serious hypersensitivity reaction to JANUMET XR or sitagliptin, such as anaphylaxis or angioedema (see Precautions and Postmarketing Experience under Adverse Reactions).
Warnings
Lactic Acidosis: Postmarketing cases of metformin-associated lactic acidosis have resulted in death, hypothermia, hypotension, and resistant bradyarrhythmias. The onset of metformin-associated lactic acidosis is often subtle, accompanied only by nonspecific symptoms such as malaise, myalgias, respiratory distress, somnolence, and abdominal pain. Metformin-associated lactic acidosis was characterized by elevated blood lactate levels (>5 mmol/Liter), anion gap acidosis (without evidence of ketonuria or ketonemia), an increased lactate/pyruvate ratio, and metformin plasma levels generally >5 mcg/mL (see Lactic Acidosis under Precautions).
Risk factors for metformin-associated lactic acidosis include renal impairment, concomitant use of certain drugs (e.g., carbonic anhydrase inhibitors such as topiramate), age 65 years old or greater, having a radiological study with contrast, surgery and other procedures, hypoxic states (e.g., acute congestive heart failure), excessive alcohol intake, and hepatic impairment.
Steps to reduce the risk of and manage metformin-associated lactic acidosis in these high risk groups are provided in the full prescribing information (see Contraindications, Lactic Acidosis under Precautions and Interactions).
If metformin-associated lactic acidosis is suspected, immediately discontinue JANUMET XR and institute general supportive measures in a hospital setting. Prompt hemodialysis is recommended (see Lactic Acidosis under Precautions).
Special Precautions
Lactic Acidosis: Metformin hydrochloride: There have been postmarketing cases of metformin-associated lactic acidosis, including fatal cases. These cases had a subtle onset and were accompanied by nonspecific symptoms such as malaise, myalgias, abdominal pain, respiratory distress, or increased somnolence; however, hypothermia, hypotension and resistant bradyarrhythmias have occurred with severe acidosis. Metformin-associated lactic acidosis was characterized by elevated blood lactate concentrations (>5 mmol/Liter), anion gap acidosis (without evidence of ketonuria or ketonemia), and an increased lactate/pyruvate ratio; metformin plasma levels were generally >5 mcg/mL. Metformin decreases liver uptake of lactate increasing lactate blood levels which may increase the risk of lactic acidosis, especially in patients at risk.
If metformin-associated lactic acidosis is suspected, general supportive measures should be instituted promptly in a hospital setting, along with immediate discontinuation of JANUMET XR. In JANUMET XR-treated patients with a diagnosis or strong suspicion of lactic acidosis, prompt hemodialysis is recommended to correct the acidosis and remove accumulated metformin (metformin hydrochloride is dialyzable, with a clearance of up to 170 mL/min under good hemodynamic conditions). Hemodialysis has often resulted in reversal of symptoms and recovery.
Educate patients and their families about the symptoms of lactic acidosis, and if these symptoms occur instruct them to discontinue JANUMET XR and report these symptoms to their healthcare provider.
For each of the known and possible risk factors for metformin-associated lactic acidosis, recommendations to reduce the risk of and manage metformin-associated lactic acidosis are provided as follows: Renal Impairment: The postmarketing metformin-associated lactic acidosis cases primarily occurred in patients with significant renal impairment. The risk of metformin accumulation and metformin-associated lactic acidosis increases with the severity of renal impairment because metformin is substantially excreted by the kidney. Clinical recommendations based upon the patient's renal function include (see Recommendations for Use in Renal Impairment under Dosage & Administration and Pharmacology: Pharmacokinetics under Actions): Before initiating JANUMET XR, obtain an estimated glomerular filtration rate (eGFR).
JANUMET XR is contraindicated in patients with an eGFR less than 30 mL/min/1.73 m2.
Discontinue JANUMET XR if the patient's eGFR later falls below 30 mL/min/1.73 m2 (see Contraindications).
Initiation of JANUMET XR is not recommended in patients with eGFR between 30 and 45 mL/min/1.73 m2.
In patients taking JANUMET XR whose eGFR later falls below 45 mL/min/1.73 m2, assess the benefit and risk of continuing therapy.
Obtain an eGFR at least annually in all patients taking JANUMET XR. In patients at increased risk for the development of renal impairment (e.g., the elderly), renal function should be assessed more frequently.
Drug Interactions: The concomitant use of JANUMET XR with specific drugs may increase the risk of metformin associated lactic acidosis: those that impair renal function, result in significant hemodynamic change, interfere with acid-base balance or increase metformin accumulation (see Interactions). Therefore, consider more frequent monitoring of patients.
Age 65 or Greater: The risk of metformin-associated lactic acidosis increases with the patient's age because elderly patients have a greater likelihood of having hepatic, renal, or cardiac impairment than younger patients. Assess renal function more frequently in elderly patients (see Use in Specific Populations under Precautions).
Radiological Studies with Contrast: Administration of intravascular iodinated contrast agents in metformin-treated patients has led to an acute decrease in renal function and the occurrence of lactic acidosis. Stop JANUMET XR at the time of, or prior to, an iodinated contrast imaging procedure in patients with an eGFR between 30 and 60 mL/min/1.73 m2; in patients with a history of hepatic impairment, alcoholism, or heart failure; or in patients who will be administered intra-arterial iodinated contrast. Re-evaluate eGFR 48 hours after the imaging procedure, and restart JANUMET XR if renal function is stable.
Surgery and Other Procedures: Withholding of food and fluids during surgical or other procedures may increase the risk for volume depletion, hypotension and renal impairment. JANUMET XR should be temporarily discontinued while patients have restricted food and fluid intake.
Hypoxic States: Several of the postmarketing cases of metformin-associated lactic acidosis occurred in the setting of acute congestive heart failure (particularly when accompanied by hypoperfusion and hypoxemia). Cardiovascular collapse (shock), acute myocardial infarction, sepsis, and other conditions associated with hypoxemia have been associated with lactic acidosis and may also cause prerenal azotemia. When such events occur, discontinue JANUMET XR.
Excessive Alcohol Intake: Alcohol potentiates the effect of metformin on lactate metabolism and this may increase the risk of metformin-associated lactic acidosis. Warn patients against excessive alcohol intake while receiving JANUMET XR.
Hepatic Impairment: Patients with hepatic impairment have developed with cases of metformin-associated lactic acidosis. This may be due to impaired lactate clearance resulting in higher lactate blood levels. Therefore, avoid use of JANUMET XR in patients with clinical or laboratory evidence of hepatic disease.
Pancreatitis: There have been postmarketing reports of acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, in patients taking sitagliptin with or without metformin. After initiation of JANUMET XR, patients should be observed carefully for signs and symptoms of pancreatitis. If pancreatitis is suspected, JANUMET XR should promptly be discontinued and appropriate management should be initiated. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using JANUMET XR.
Assessment of Renal Function: Metformin and sitagliptin are substantially excreted by the kidney.
Metformin hydrochloride: JANUMET XR is contraindicated in patients with severe renal impairment (see Contraindications and Lactic Acidosis as previously mentioned).
Sitagliptin: There have been postmarketing reports of worsening renal function in patients taking sitagliptin with or without metformin, including acute renal failure, sometimes requiring dialysis. Before initiation of therapy with JANUMET XR and at least annually thereafter, renal function should be assessed. In patients in whom development of renal dysfunction is anticipated, particularly in elderly patients, renal function should be assessed more frequently and JANUMET XR discontinued if evidence of renal impairment is present. (See Table 5.)

Click on icon to see table/diagram/image

Vitamin B12 Levels: In controlled clinical trials of metformin of 29 weeks duration, a decrease to subnormal levels of previously normal serum Vitamin B12 levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B12 absorption from the B12-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of metformin or Vitamin B12 supplementation. Measurement of hematologic parameters on an annual basis is advised in patients on JANUMET XR and any apparent abnormalities should be appropriately investigated and managed (see Clinical Trials Experience under Adverse Reactions).
Certain individuals (those with inadequate Vitamin B12 or calcium intake or absorption) appear to be predisposed to developing subnormal Vitamin B12 levels. In these patients, routine serum Vitamin B12 measurements at two- to three-year intervals may be useful.
Change in Clinical Status of Patients with Previously Controlled Type 2 Diabetes: A patient with type 2 diabetes previously well controlled on JANUMET XR who develops laboratory abnormalities or clinical illness (especially vague and poorly defined illness) should be evaluated promptly for evidence of ketoacidosis or lactic acidosis. Evaluation should include serum electrolytes and ketones, blood glucose and, if indicated, blood pH, lactate, pyruvate, and metformin levels. If acidosis of either form occurs, JANUMET XR must be stopped immediately and other appropriate corrective measures initiated.
Use with Medications Known to Cause Hypoglycemia: Sitagliptin: When sitagliptin was used in combination with a sulfonylurea or with insulin, medications known to cause hypoglycemia, the incidence of hypoglycemia was increased over that of placebo used in combination with a sulfonylurea or with insulin (see Adverse Reactions). Therefore, patients also receiving an insulin secretagogue (e.g., sulfonylurea) or insulin may require a lower dose of the insulin secretagogue or insulin to reduce the risk of hypoglycemia (see Recommended Dosing under Dosage & Administration).
Metformin hydrochloride: Hypoglycemia does not occur in patients receiving metformin alone under usual circumstances of use, but could occur when caloric intake is deficient, when strenuous exercise is not compensated by caloric supplementation, or during concomitant use with other glucose-lowering agents (such as sulfonylureas and insulin) or ethanol. Elderly, debilitated, or malnourished patients, and those with adrenal or pituitary insufficiency or alcohol intoxication are particularly susceptible to hypoglycemic effects. Hypoglycemia may be difficult to recognize in the elderly, and in people who are taking β-adrenergic blocking drugs.
Loss of Control of Blood Glucose: When a patient stabilized on any diabetic regimen is exposed to stress such as fever, trauma, infection, or surgery, a temporary loss of glycemic control may occur. At such times, it may be necessary to withhold JANUMET XR and temporarily administer insulin. JANUMET XR may be reinstituted after the acute episode is resolved.
Hypersensitivity Reactions: There have been postmarketing reports of serious hypersensitivity reactions in patients treated with sitagliptin, one of the components of JANUMET XR. These reactions include anaphylaxis, angioedema, and exfoliative skin conditions including Stevens-Johnson syndrome. Onset of these reactions occurred within the first 3 months after initiation of treatment with sitagliptin, with some reports occurring after the first dose. If a hypersensitivity reaction is suspected, discontinue JANUMET XR, assess for other potential causes for the event, and institute alternative treatment for diabetes (see Postmarketing Experience under Adverse Reactions).
Use caution in a patient with a history of angioedema to another dipeptidyl peptidase-4 (DPP4) inhibitor because it is unknown whether such patients will be predisposed to angioedema with JANUMET XR.
Bullous Pemphigoid: Postmarketing cases of bullous pemphigoid requiring hospitalization have been reported with DPP-4 inhibitor use. In reported cases, patients typically recovered with topical or systemic immunosuppressive treatment and discontinuation of the DPP-4 inhibitor. Tell patients to report development of blisters or erosions while receiving JANUMET XR. If bullous pemphigoid is suspected, JANUMET XR should be discontinued and referral to a dermatologist should be considered for diagnosis and appropriate treatment.
Macrovascular Outcomes: There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with JANUMET XR or any other anti-diabetic drug.
Use in Children: Safety and effectiveness of JANUMET XR in pediatric patients under 18 years have not been established.
Use in Elderly: JANUMET XR: Because sitagliptin and metformin are substantially excreted by the kidney, and because aging can be associated with reduced renal function, JANUMET XR should be used with caution as age increases. Care should be taken in dose selection and should be based on careful and regular monitoring of renal function (see Lactic Acidosis and Vitamin B12 Levels as previously mentioned and Pharmacology: Pharmacokinetics under Actions).
Sitagliptin: Of the total number of subjects (N=3884) in premarketing Phase II and III clinical studies of sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. No overall differences in safety or effectiveness were observed between subjects 65 years and over and younger subjects. While this and other reported clinical experience have not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.
Metformin hydrochloride: Controlled clinical studies of metformin did not include sufficient numbers of elderly patients to determine whether they respond differently from younger patients, although other reported clinical experience has not identified differences in responses between the elderly and young patients. Metformin should only be used in patients with normal renal function. The initial and maintenance dosing of metformin should be conservative in patients with advanced age, due to the potential for decreased renal function in this population. Any dose adjustment should be based on a careful assessment of renal function (see Contraindications, Vitamin B12 Levels as previously mentioned and Pharmacology: Pharmacokinetics under Actions).
Use In Pregnancy & Lactation
Pregnancy: Pregnancy Category B: JANUMET XR: There are no adequate and well-controlled studies in pregnant women with JANUMET XR or its individual components; therefore, the safety of JANUMET XR in pregnant women is not known. JANUMET XR should be used during pregnancy only if clearly needed.
No animal studies have been conducted with the combined products in JANUMET XR to evaluate effects on reproduction. The following data are based on findings in studies performed with sitagliptin or metformin individually.
Sitagliptin: Reproduction studies have been performed in rats and rabbits. Doses of sitagliptin up to 125 mg/kg (approximately 12 times the human exposure at the maximum recommended human dose) did not impair fertility or harm the fetus. There are, however, no adequate and well-controlled studies with sitagliptin in pregnant women.
Sitagliptin administered to pregnant female rats and rabbits from gestation day 6 to 20 (organogenesis) was not teratogenic at oral doses up to 250 mg/kg (rats) and 125 mg/kg (rabbits), or approximately 30 and 20 times human exposure at the maximum recommended human dose (MRHD) of 100 mg/day based on AUC comparisons. Higher doses increased the incidence of rib malformations in offspring at 1000 mg/kg, or approximately 100 times human exposure at the MRHD.
Sitagliptin administered to female rats from gestation day 6 to lactation day 21 decreased body weight in male and female offspring at 1000 mg/kg. No functional or behavioral toxicity was observed in offspring of rats.
Placental transfer of sitagliptin administered to pregnant rats was approximately 45% at 2 hours and 80% at 24 hours postdose. Placental transfer of sitagliptin administered to pregnant rabbits was approximately 66% at 2 hours and 30% at 24 hours.
Metformin hydrochloride: Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day, which represent 3 and 6 times the maximum recommended human daily dose of 2000 mg based on body surface area comparison for rats and rabbits, respectively. However, because animal reproduction studies are not always predictive of human response, metformin hydrochloride should not be used during pregnancy unless clearly needed.
Nursing Mothers: No studies in lactating animals have been conducted with the combined components of JANUMET XR. In studies performed with the individual components, both sitagliptin and metformin are secreted in the milk of lactating rats. It is not known whether sitagliptin or metformin are excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when JANUMET XR is administered to a nursing woman.
Adverse Reactions
Clinical Trials Experience: Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Sitagliptin and Metformin Immediate-Release Coadministration in Patients with Type 2 Diabetes Inadequately Controlled on Diet and Exercise: Table 6 summarizes the most common (≥5% of patients) adverse reactions reported (regardless of investigator assessment of causality) in a 24-week placebo-controlled factorial study in which sitagliptin and metformin immediate-release were coadministered to patients with type 2 diabetes inadequately controlled on diet and exercise. (See Table 6.)

Click on icon to see table/diagram/image

Sitagliptin Add-on Therapy in Patients with Type 2 Diabetes Inadequately Controlled on Metformin Immediate-Release Alone: In a 24-week placebo-controlled trial of sitagliptin 100 mg administered once daily added to a twice daily metformin immediate-release regimen, there were no adverse reactions reported regardless of investigator assessment of causality in ≥5% of patients and more commonly than in patients given placebo. Discontinuation of therapy due to clinical adverse reactions was similar to the placebo treatment group (sitagliptin and metformin immediate-release, 1.9%; placebo and metformin immediate-release, 2.5%).
Gastrointestinal Adverse Reactions: The incidences of pre-selected gastrointestinal adverse experiences in patients treated with sitagliptin and metformin immediate-release were similar to those reported for patients treated with metformin immediate-release alone. (See Table 7.)

Click on icon to see table/diagram/image

Sitagliptin in Combination with Metformin Immediate-Release and Glimepiride: In a 24-week placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin immediate-release and glimepiride (sitagliptin, N=116; placebo, N=113), the adverse reactions reported regardless of investigator assessment of causality in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: hypoglycemia (Table 8) and headache (6.9%, 2.7%).
Sitagliptin in Combination with Metformin Immediate-Release and Rosiglitazone: In a placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin immediate-release and rosiglitazone (sitagliptin, N=181; placebo, N=97), the adverse reactions reported regardless of investigator assessment of causality through Week 18 in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: upper respiratory tract infection (sitagliptin, 5.5%; placebo, 5.2%) and nasopharyngitis (6.1%, 4.1%). Through Week 54, the adverse reactions reported regardless of investigator assessment of causality in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: upper respiratory tract infection (sitagliptin, 15.5%; placebo, 6.2%), nasopharyngitis (11.0%, 9.3%), peripheral edema (8.3%, 5.2%), and headache (5.5%, 4.1%).
Sitagliptin in Combination with Metformin Immediate-Release and Insulin: In a 24-week placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin immediate-release and insulin (sitagliptin, N=229; placebo, N=233), the only adverse reaction reported regardless of investigator assessment of causality in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo was hypoglycemia (Table 8).
Hypoglycemia: In all (N=5) studies, adverse reactions of hypoglycemia were based on all reports of symptomatic hypoglycemia; a concurrent glucose measurement was not required although most (77%) reports of hypoglycemia were accompanied by a blood glucose measurement ≤70 mg/dL. When the combination of sitagliptin and metformin immediate-release was coadministered with a sulfonylurea or with insulin, the percentage of patients reporting at least one adverse reaction of hypoglycemia was higher than that observed with placebo and metformin immediate-release coadministered with a sulfonylurea or with insulin (see Table 8).

Click on icon to see table/diagram/image

The overall incidence of reported adverse reactions of hypoglycemia in patients with type 2 diabetes inadequately controlled on diet and exercise was 0.6% in patients given placebo, 0.6% in patients given sitagliptin alone, 0.8% in patients given metformin immediate-release alone, and 1.6% in patients given sitagliptin in combination with metformin immediate-release. In patients with type 2 diabetes inadequately controlled on metformin immediate-release alone, the overall incidence of adverse reactions of hypoglycemia was 1.3% in patients given add-on sitagliptin and 2.1% in patients given add-on placebo.
In the study of sitagliptin and add-on combination therapy with metformin immediate-release and rosiglitazone, the overall incidence of hypoglycemia was 2.2% in patients given add-on sitagliptin and 0.0% in patients given add-on placebo through Week 18. Through Week 54, the overall incidence of hypoglycemia was 3.9% in patients given add-on sitagliptin and 1.0% in patients given add-on placebo.
Vital Signs and Electrocardiograms: With the combination of sitagliptin and metformin immediate-release, no clinically meaningful changes in vital signs or in electrocardiogram parameters (including the QTc interval) were observed.
Pancreatitis: In a pooled analysis of 19 double-blind clinical trials that included data from 10,246 patients randomized to receive sitagliptin 100 mg/day (N=5429) or corresponding (active or placebo) control (N=4817), the incidence of acute pancreatitis was 0.1 per 100 patient-years in each group (4 patients with an event in 4708 patient-years for sitagliptin and 4 patients with an event in 3942 patient-years for control) (see Pancreatitis under Precautions).
Sitagliptin: The most common adverse experience in sitagliptin monotherapy reported regardless of investigator assessment of causality in ≥5% of patients and more commonly than in patients given placebo was nasopharyngitis.
Metformin Extended-Release: In a 24-week clinical trial in which extended-release metformin or placebo was added to glyburide therapy, the most common (>5% and greater than placebo) adverse reactions in the combined treatment group were hypoglycemia (13.7% vs. 4.9%), diarrhea (12.5% vs. 5.6%), and nausea (6.7% vs. 4.2%).
Laboratory Tests: Sitagliptin: The incidence of laboratory adverse reactions was similar in patients treated with sitagliptin and metformin immediate-release (7.6%) compared to patients treated with placebo and metformin (8.7%). In most but not all studies, a small increase in white blood cell count (approximately 200 cells/microL difference in WBC vs. placebo; mean baseline WBC approximately 6600 cells/microL) was observed due to a small increase in neutrophils. This change in laboratory parameters is not considered to be clinically relevant.
Metformin hydrochloride: In controlled clinical trials of metformin of 29 weeks duration, a decrease to subnormal levels of previously normal serum Vitamin B12 levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B12 absorption from the B12-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of metformin or Vitamin B12 supplementation (see Change in Clinical Status of Patients with Previously Controlled Type 2 Diabetes under Precautions).
Postmarketing Experience: Additional adverse reactions have been identified during postapproval use of sitagliptin with or without metformin, and/or in combination with other antidiabetic medications. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Hypersensitivity reactions including anaphylaxis, angioedema, rash, urticaria, cutaneous vasculitis, and exfoliative skin conditions including Stevens-Johnson syndrome (see Precautions); upper respiratory tract infection; hepatic enzyme elevations; acute pancreatitis, including fatal and non-fatal hemorrhagic and necrotizing pancreatitis (see Indications/Uses and Pancreatitis under Precautions); worsening renal function, including acute renal failure (sometimes requiring dialysis) (see Vitamin B12 Levels under Precautions); bullous pemphigoid (see Precautions); constipation; vomiting; headache; arthralgia; myalgia; pain in extremity; back pain; pruritus.
Drug Interactions
Carbonic Anhydrase Inhibitors: Topiramate or other carbonic anhydrase inhibitors (e.g., zonisamide, acetazolamide or dichlorphenamide) frequently decrease serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis. Concomitant use of these drugs may induce metabolic acidosis. Use these drugs with caution in patients treated with JANUMET XR, as the risk of lactic acidosis may increase.
Cationic Drugs: Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine, ranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of JANUMET XR and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.
The Use of Metformin with Other Drugs: Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving JANUMET XR the patient should be closely observed to maintain adequate glycemic control.
MIMS Class
Antidiabetic Agents
ATC Classification
A10BD07 - metformin and sitagliptin ; Belongs to the class of combinations of oral blood glucose lowering drugs. Used in the treatment of diabetes.
Presentation/Packing
Form
Janumet XR 100/1000 mg FC tab
Packing/Price
28's
Form
Janumet XR 50/1000 mg FC tab
Packing/Price
56's
Form
Janumet XR 50/500 mg FC tab
Packing/Price
56's
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in