Uptravi

Uptravi Drug Interactions

selexipag

Manufacturer:

Janssen

Distributor:

DCH Auriga - Healthcare
/
Four Star
The information highlighted (if any) are the most recent updates for this brand.
Full Prescribing Info
Drug Interactions
Effect of other medicinal products on selexipag: Selexipag is hydrolysed to its active metabolite by carboxylesterase (see Pharmacology: Pharmacokinetics under Actions). Selexipag and its active metabolite both undergo oxidative metabolism mainly by CYP2C8 and to a smaller extent by CYP3A4. The glucuronidation of the active metabolite is catalysed by UGT1A3 and UGT2B7. Selexipag and its active metabolite are substrates of OATP1B1 and OATP1B3. Selexipag is a weak substrate of the P-gp efflux pump. The active metabolite is a weak substrate of the breast cancer resistance protein (BCRP).
The pharmacokinetics of selexipag and its active metabolite are not affected by warfarin.
Inhibitors of CYP2C8: In the presence of 600 mg gemfibrozil, twice a day, a strong inhibitor of CYP2C8, exposure to selexipag increased approximately 2-fold, whereas exposure to the active metabolite, the major contributor to efficacy, increased approximately 11-fold. Concomitant administration of Uptravi with strong inhibitors of CYP2C8 (e.g., gemfibrozil) is contraindicated (see Contraindications).
The effect of moderate inhibitors of CYP2C8 (e.g., clopidogrel, deferasirox, teriflunomide) on the exposure to selexipag and its active metabolite has not been studied. An adjustment of the dose of Uptravi should be considered in case a moderate inhibitor of CYP2C8 is coadministered or discontinued. A potential pharmacokinetic interaction with moderate inhibitors of CYP2C8 cannot be excluded (see Precautions).
Inducers of CYP2C8: In the presence of 600 mg rifampicin, once a day, an inducer of CYP2C8 (and UGT enzymes), the exposure to selexipag did not change, whereas exposure to the active metabolite was reduced by half. Dose adjustment of selexipag may be required with concomitant administration of inducers of CYP2C8 (e.g., rifampicin, carbamazepine, phenytoin).
Inhibitors of UGT1A3, and UGT2B7: The effect of strong inhibitors of UGT1A3 and UGT2B7 (valproic acid, probenecid, and fluconazole) on the exposure to selexipag and its active metabolite has not been studied. Caution is required when administering these medicinal products concomitantly with Uptravi. A potential pharmacokinetic interaction with strong inhibitors of UGT1A3 and UGT2B7 cannot be excluded.
Inhibitors and inducers of CYP3A4: In the presence of 400/100 mg lopinavir/ritonavir twice daily, a strong CYP3A4 inhibitor, exposure to selexipag increased approximately 2‑fold, whereas the exposure to the active metabolite of selexipag did not change. Given the 37-fold higher potency of the active metabolite, this effect is not clinically relevant. Since a strong inhibitor of CYP3A4 did not affect the pharmacokinetics of the active metabolite, indicating that the CYP3A4 pathway is not important in the elimination of the active metabolite, no effect of inducers of CYP3A4 on the pharmacokinetics of the active metabolite is expected.
PAH‑specific therapies: In the Phase 3 placebo-controlled trial in patients with PAH, the use of selexipag in combination with both an ERA and a PDE-5 inhibitor resulted in a 30% lower exposure to the active metabolite.
Transporter inhibitors (lopinavir/ritonavir): In the presence of 400/100 mg lopinavir/ritonavir twice daily, a strong OATP (OATP1B1 and OATP1B3) and P-gp inhibitor, exposure to selexipag increased approximately 2-fold, whereas the exposure to the active metabolite of selexipag did not change. Given that the majority of the pharmacological effect is driven by the active metabolite, this effect is not clinically relevant.
Effect of selexipag on other medicinal products: Selexipag and its active metabolite do not inhibit or induce cytochrome P450 enzymes and transport proteins at clinically relevant concentrations.
Anticoagulants or inhibitors of platelet aggregation: Selexipag is an inhibitor of platelet aggregation in vitro. In the Phase 3 placebo-controlled study in patients with PAH, no increased risk of bleeding was detected with selexipag compared to placebo, including when selexipag was administered with anticoagulants (such as heparin, coumarin-type anticoagulants) or inhibitors of platelet aggregation. In a study in healthy subjects, selexipag (400 micrograms twice daily) did not alter the exposure to S-warfarin (CYP2C9 substrate) or R‑warfarin (CYP3A4 substrate) after a single dose of 20 mg warfarin. Selexipag did not influence the pharmacodynamic effect of warfarin on the international normalised ratio.
Midazolam: At steady state after up-titration to 1,600 μg selexipag twice a day, no clinically relevant change in exposure to midazolam, a sensitive intestinal and hepatic CYP3A4 substrate, or its metabolite, 1-hydroxymidazolam, was observed. Concomitant administration of selexipag with CYP3A4 substrates does not require dose adjustment.
Hormonal contraceptives: Specific drug-drug interaction studies with hormonal contraceptives have not been conducted. Since selexipag did not affect the exposure to the CYP3A4 substrates midazolam and R-warfarin or to the CYP2C9 substrate S-warfarin, reduced efficacy of hormonal contraceptives is not expected.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in