Azitas

Azitas

azithromycin

Manufacturer:

Stallion Labs

Distributor:

Mirabell
Full Prescribing Info
Contents
Azithromycin dihydrate.
Description
Each film-coated tablet contains: Azithromycin (as dihydrate) 500 mg.
Action
Pharmacology: Pharmacodynamics: Azithromycin is a macrolide antibiotic belonging to the azalide group.
The molecule is constructed by adding a nitrogen atom to the lactone ring of erythromycin A. The chemical name of azithromycin is 9-deoxy-9a-aza-9a-methyl-9a-homoerythromycin A. The molecular weight is 749.0.
Mechanism of action: Azithromycin is an azalide, a sub-class of the macrolide antibiotics. By binding to the 50S ribosomal sub-unit, azithromycin avoids the translocation of peptide chains from one side of the ribosome to the other. As a consequence of this, RNA-dependent protein synthesis in sensitive organisms is prevented.
PK/PD relationship: For azithromycin the AUC/MIC is the major PK/PD parameter correlating best with the efficacy of azithromycin.
Mechanism of resistance: Resistance to azithromycin may be inherent or acquired. There are three main mechanisms of resistance in bacteria: target site alteration, alteration in antibiotic transport and modification of the antibiotic.
Complete cross resistance exists among Streptococcus pneumoniae, betahaemolytic streptococcus of group A, Enterococcus faecalis and Staphylococcus aureus, including methicillin resistant S. aureus (MRSA) to erythromycin, azithromycin, other macrolides and lincosamides.
Pharmacokinetics: Unlike erythromycin, azithromycin is acid-stable and therefore, be taken orally with no need of protection from gastric acids. It is readily absorbed, but its absorption is greater on an empty stomach. Time peak concentration in adults is 2.1 to 3.2 hours for oral dosage forms and one to two hours after a dose. Due to the high concentration in phagocytes, azithromycin is actively transported to the site of infection. During active phagocytosis large concentrations of azithromycin are released. The concentration of azithromycin in the tissue can be over 50 times higher than in plasma. This is due to ion trapping and the high lipid solubility (Volume of distribution is too low). Peak plasma concentrations are extensively distribute to the tissues, and tissue concentration are achieved 2 to 3 hours after a dose, but azithromycin is extensively distributed to the tissues, and tissue concentrations subsequently remain much higher than those in the blood; in contrast to most other antibacterials, plasma concentrations are therefore of little value as a guide to efficacy. High concentrations are taken up into white blood cells. There is little diffusions into the CSF when the meninges are not inflamed. Small amount of Azithromycin (Azitas) are demethylated in the liver, and its excreted in bile as unchanged drug and metabolites. About 6% of an oral dose (representing about 20% of the amount in the systemic circulation) is excreted in the urine. The terminal elimination half-life is probably in excess of 40 hours.
Indications/Uses
Infections from respiratory pathogens (e.g. S. pyogenes, S. pneumoniae, M. catarrhalis, C. trachomatis, Legionella sp., Mycoplasma pneumoniae, S. aureus, and H. influenzae); C. pneumoniae and M. avium infection; uncomplicated chlamydial urethritis, cervicitis or pharyngitis; alternative drug or multi-drug resistant Salmonella typhi infection outside the Central Nervous System (CNS).
Dosage/Direction for Use
Adults: Upper & Lower respiratory tract and skin & soft infections: 500 mg once a day followed by 250 mg once daily for the next 4 days.
Urogenital infections as single dose.
Or as prescribed by the physician.
Overdosage
Adverse events experienced in higher than recommended doses were similar to those seen at normal doses.
Symptoms: The typical symptoms of an overdose with macrolide antibiotics include reversible loss of hearing, severe nausea, vomiting and diarrhoea.
Treatment: In the event of overdose, general symptomatic and supportive measures are indicated as required.
Contraindications
The use of this product is contraindicated in patients with hypersensitivity to azithromycin, erythromycin, any macrolide or ketolide antibiotic, or to any of the excipients present in the formulation.
Special Precautions
Hypersensitivity: As with erythromycin and other macrolides, rare serious allergic reactions including angioneurotic oedema and anaphylaxis (rarely fatal), dermatologic reactions including acute generalised exanthematous pustulosis (AGEP), Stevens Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (rarely fatal) and drug reaction with eosinophilia and systemic symptoms (DRESS) have been reported. Some of these reactions with azithromycin have resulted in recurrent symptoms and required a longer period of observation and treatment.
If an allergic reaction occurs, the drug should be discontinued and appropriate therapy should be instituted. Physicians should be aware that reappearance of the allergic symptoms may occur when symptomatic therapy is discontinued.
Hepatic impairment: Since the liver is the principal route of elimination for azithromycin, the use of azithromycin should be undertaken with caution in patients with significant hepatic disease. Cases of fulminant hepatitis potentially leading to life-threatening liver failure have been reported with azithromycin. Some patients may have had pre-existing hepatic disease or may have been taking other hepatotoxic medicinal products.
In case of signs and symptoms of liver dysfunction, such as rapid developing asthenia associated with jaundice, dark urine, bleeding tendency or hepatic encephalopathy, liver function tests/investigations should be performed immediately. Azithromycin administration should be stopped if liver dysfunction has emerged.
Ergot alkaloids and azithromycin: In patients receiving ergot derivatives, ergotism has been precipitated by coadministration of some macrolide antibiotics. There are no data concerning the possibility of an interaction between ergotamine derivatives and azithromycin. However, because of the theoretical possibility of ergotism, azithromycin and ergot derivatives should not be co-administered.
Superinfections: As with any antibiotic preparation, it is recommended to pay attention to signs of superinfection with nonsusceptible microorganisms like fungi. A superinfection may require an interruption of the azithromycin treatment and initiation of adequate measures.
Clostridium difficile associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents, including azithromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. Discontinuation of therapy with azithromycin and the administration of specific treatment for C. difficile should be considered.
Streptococcal infections: Penicillin is usually the first choice for treatment of pharyngitis/tonsillitis due to Streptococcus pyogenes and also for prophylaxis of acute rheumatic fever. Azithromycin is in general effective against streptococcus in the oropharynx, but no data are available that demonstrate the efficacy of azithromycin in preventing acute rheumatic fever.
Renal impairment: In patients with severe renal impairment (GFR < 10 ml/min) a 33% increase in systemic exposure to azithromycin was observed.
QT prolongation: Prolonged cardiac repolarisation and QT interval, imparting a risk of developing cardiac arrhythmia and torsades de pointes, have been seen in treatment with other macrolides, including azithromycin. Therefore as the following situations may lead to an increased risk for ventricular arrhythmias (including torsade de pointes) which can lead to cardiac arrest, azithromycin should be used with caution in patients with ongoing proarrhythmic conditions (especially women and elderly patients) such as patients: With congenital or documented acquired QT prolongation.
Currently receiving treatment with other active substances known to prolong QT interval such as antiarrhythmics of class IA (quinidine and procainamide) and class III (dofetilide, amiodarone and sotalol), cisapride and terfenadine; antipsychotic agents such as pimozide; antidepressants such as citalopram; and fluoroquinolones such as moxifloxacin and levofloxacin.
With electrolyte disturbance, particularly in cases of hypokalaemia and hypomagnesaemia.
With clinically relevant bradycardia, cardiac arrhythmia or severe cardiac insufficiency.
Myasthenia gravis: Exacerbations of the symptoms of myasthenia gravis and new onset of myasthenia syndrome have been reported in patients receiving azithromycin therapy.
Use in Children: Safety and efficacy for the prevention or treatment of Mycobacterium Avium Complex (MAC) in children have not been established.
Use In Pregnancy & Lactation
Pregnancy: There are no adequate data from the use of azithromycin in pregnant women. In reproduction toxicity studies in animals azithromycin was shown to pass the placenta, but no teratogenic effects were observed. The safety of azithromycin has not been confirmed with regard to the use of the active substance during pregnancy. Therefore, azithromycin should only be used during pregnancy if the benefit outweighs the risk.
Breastfeeding: Azithromycin has been reported to be secreted into human breast milk, but there are no adequate and well controlled clinical studies in nursing women that have characterized the pharmacokinetics of azithromycin excretion into human breast milk.
Because it is not known whether azithromycin may have adverse effects on the breast-fed infant, nursing should be discontinued during treatment with azithromycin. Among other things diarrhoea, fungus infection of the mucous membrane as well as sensitisation is possible in the nursed infant. It is recommended to discard the milk during treatment and up until 2 days after discontinuation of treatment. Nursing may be resumed thereafter.
Adverse Reactions
Gastrointestinal disturbances are the most frequent adverse effect but are usually mild and less frequent than with erythromycin. Transient elevations of liver enzyme values have been reported and, rarely, cholestatic jaundice. Rashes, headache and dizziness may occur. Severe hypersensitivity reactions occur rarely but may be prolonged. Transient alterations in neutrophil counts have been seen in patients receiving Azithromycin.
Drug Interactions
Antacids: In a pharmacokinetic study investigating the effects of simultaneous administration of antacids with azithromycin, no effect on overall bioavailability was seen, although peak serum levels were reduced by approximately 25%. Azithromycin must be taken at least 1 hour before or 2 hours after antacids.
Cetirizine: In healthy volunteers, coadministration of a 5-day regimen of azithromycin with cetirizine 20 mg at steady-state resulted in no pharmacokinetic interaction and no significant changes in the QT interval.
Didanosines (Dideoxyinosine): Coadministration of 1200 mg/day azithromycin with 400 mg/day didanosine in 6 HIV-positive subjects did not appear to affect the steady-state pharmacokinetics of didanosine as compared with placebo.
Digoxin (P-gp substrates): Concomitant administration of macrolide antibiotics, including azithromycin, with P-glycoprotein substrates such as digoxin, has been reported to result in increased serum levels of the P-glycoprotein substrate. Therefore, if azithromycin and P-gp substrates such as digoxin are administered concomitantly, the possibility of elevated serum concentrations of the substrate should be considered.
Zidovudine: Single 1000 mg doses and multiple doses of 600 mg or 1200 mg azithromycin had little effect on the plasma pharmacokinetics or urinary excretion of zidovudine or its glucuronide metabolite. However, administration of azithromycin increased the concentrations of phosphorylated zidovudine, the clinically active metabolite, in peripheral blood mononuclear cells. The clinical significance of this finding is unclear, but it may be of benefit to patients.
Azithromycin does not interact significantly with the hepatic cytochrome P450 system. It is not believed to undergo the pharmacokinetic drug interactions as seen with erythromycin and other macrolides. Hepatic cytochrome P450 induction or inactivation via cytochrome metabolite complex does not occur with azithromycin.
Ergotamine derivatives: Due to the theoretical possibility of ergotism, the concurrent use of azithromycin with ergot derivatives is not recommended. Pharmacokinetic studies have been conducted between azithromycin and the following drugs known to undergo significant cytochrome P450 mediated metabolism.
Astemizole, alfentanil: There are no known data on interactions with astemizole or alfentanil. Caution is advised in the coadministration of these medicines with Azithromycin because of the known enhancing effect of these medicines when used concurrently with the macrolide antibiotic erythromycin.
Atorvastatin: Coadministration of atorvastatin (10 mg daily) and azithromycin (500 mg daily) did not alter the plasma concentrations of atorvastatin (based on a HMG CoA-reductase inhibition assay). However, postmarketing cases of rhabdomyolysis in patients receiving azithromycin with statins have been reported.
Carbamazepine: In a pharmacokinetic interaction study in healthy volunteers, no significant effect was observed on the plasma levels of carbamazepine or its active metabolite in patients receiving concomitant azithromycin.
Cisapride: Cisapride is metabolized in the liver by the enzyme CYP 3A4. Because macrolides inhibit this enzyme, concomitant administration of cisapride may cause the increase of QT interval prolongation, ventricular arrhythmias and torsades de pointes.
Cimetidine: In a pharmacokinetic study investigating the effects of a single dose of cimetidine, given 2 hours before azithromycin, on the pharmacokinetics of azithromycin, no alteration of azithromycin pharmacokinetics was seen.
Coumarin Type Oral Anticoagulants: In a pharmacokinetic interaction study, azithromycin did not alter the anticoagulant effect of a single 15-mg dose of warfarin administered to healthy volunteers. There have been reports received in the postmarketing period of potentiated anticoagulation subsequent to coadministration of azithromycin and coumarin type oral anticoagulants. Although a causal relationship has not been established, consideration should be given to the frequency of monitoring prothrombin time when azithromycin is used in patients receiving coumarin type oral anticoagulants.
Cyclosporin: In a pharmacokinetic study with healthy volunteers that were administered a 500 mg/day oral dose of azithromycin for 3 days and were then administered a single 10 mg/kg oral dose of cyclosporin, the resulting cyclosporin Cmax and AUC0-5 were found to be significantly elevated. Consequently, caution should be exercised before considering concurrent administration of these drugs.  If coadministration of these drugs is necessary, cyclosporin levels should be monitored and the dose adjusted accordingly.
Efavirenz: Coadministration of a 600 mg single dose of azithromycin and 400 mg efavirenz daily for 7 days did not result in any clinically significant pharmacokinetic interactions.
Fluconazole: Coadministration of a single dose of 1200 mg azithromycin did not alter the pharmacokinetics of a single dose of 800 mg fluconazole. Total exposure and half-life of azithromycin were unchanged by the coadministration of fluconazole, however, a clinically insignificant decrease in Cmax (18%) of azithromycin was observed.
Indinavir: Coadministration of a single dose of 1200 mg azithromycin had no statistically significant effect on the pharmacokinetics of indinavir administered as 800 mg three times daily for 5 days.
Methylprednisolone: In a pharmacokinetic interaction study in healthy volunteers, azithromycin had no significant effect on the pharmacokinetics of methylprednisolone.
Midazolam: In healthy volunteers, coadministration of azithromycin 500 mg/day for 3 days did not cause clinically significant changes in the pharmacokinetics and pharmacodynamics of a single 15 mg dose of midazolam.
Nelfinavir: Coadministration of azithromycin (1200 mg) and nelfinavir at steady state (750 mg three times daily) resulted in increased azithromycin concentrations. No clinically significant adverse effects were observed and no dose adjustment is required.
Rifabutin: Coadministration of azithromycin and rifabutin did not affect the serum concentrations of either drug. Neutropenia was observed in subjects receiving concomitant treatment of azithromycin and rifabutin. Although neutropenia has been associated with the use of rifabutin, a causal relationship to combination with azithromycin has not been established.
Sildenafil: In normal healthy male volunteers, there was no evidence of an effect of azithromycin (500 mg daily for 3days) on the AUC and Cmax of sildenafil or its major circulating metabolite.
Terfenadine: Pharmacokinetic studies have reported no evidence of an interaction between azithromycin and terfenadine. There have been rare cases reported where the possibility of such an interaction could not be entirely excluded; however there was no specific evidence that such an interaction had occurred.
Theophylline: There is no evidence of a clinically significant pharmacokinetic interaction when azithromycin and theophylline are co-administered to healthy volunteers. As interactions of other macrolides with theophylline have been reported, alertness to signs that indicate a rise in theophylline levels is advised.
Triazolam: In 14 healthy volunteers, coadministration of azithromycin 500 mg on Day 1 and 250 mg on Day 2 with 0.125 mg triazolam on Day 2 had no significant effect on any of the pharmacokinetic variables for triazolam compared to triazolam and placebo.
Trimethoprim/sulfamethoxazole: Coadministration of trimethoprim/sulfamethoxazole DS (160 mg/800 mg) for 7 days with azithromycin 1200 mg on Day 7 had no significant effect on peak concentrations, total exposure or urinary excretion of either trimethoprim or sulfamethoxazole. Azithromycin serum concentrations were similar to those seen in other studies.
Storage
Store at temperatures not exceeding 30°C.
MIMS Class
Macrolides
ATC Classification
J01FA10 - azithromycin ; Belongs to the class of macrolides. Used in the systemic treatment of infections.
Presentation/Packing
Form
Azitas FC tab 500 mg
Packing/Price
3's
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in