Redditux

Redditux Mechanism of Action

rituximab

Manufacturer:

Dr Reddy's Lab

Distributor:

Dr Reddy's Lab
Full Prescribing Info
Action
Pharmacotherapeutic group: Monoclonal antibodies. ATC code: L01X C02.
Pharmacology: Pharmacodynamics: Rituximab binds specifically to the transmembrane antigen, CD20, a non-glycosylated phosphoprotein, located on pre-B and mature B lymphocytes. The antigen is expressed on >90 % of all B cell non-Hodgkin's Lymphomas (NHLs). CD20 is found on both normal and malignant B cells, but not on haematopoietic stem cells, pro-B cells, normal plasma cells or other normal tissue. This antigen does not internalise upon antibody binding and is not shed from the cell surface. CD20 does not circulate in the plasma as a free antigen and thus, does not compete for antibody binding.
The Fab domain of rituximab binds to the CD20 antigen on B lymphocytes and the Fc domain can recruit immune effector functions to mediate B cell lysis. Possible mechanisms of effector-mediated cell lysis include complement-dependent cytotoxicity (CDC) resulting from C1q binding, and antibody-dependent cellular cytotoxicity (ADCC) mediated by one or more of the Fcγ receptors on the surface of granulocytes, macrophages and NK cells. Rituximab binding to CD 20 antigen on B-lymphocytes has also been demonstrated to induce cell death via apoptosis.
Peripheral B cell counts declined below normal following completion of the first dose of rituximab. In patients treated for haematological malignancies, B cell recovery began within 6 months of treatment and generally returned to normal levels within 12 months after completion of therapy, although in some patients this may take longer (up to a median recovery time of 23 months post-induction therapy).
In patients with granulomatosis with polyangiitis or microscopic polyangiitis, the number of peripheral blood B cells decreased to <10 cells/μL after two weekly infusions of rituximab 375 mg/m2, and remained at that level in most patients up to the 6 month timepoint. The majority of patients (81%) showed signs of B cell return, with counts >10 cells/μL by month 12, increasing to 87% of patients by month 18.
Pharmacokinetics: Non-Hodgkin's lymphoma: Based on a population pharmacokinetic analysis in 298 NHL patients who received single or multiple infusions of rituximab as a single agent or in combination with CHOP therapy (applied rituximab doses ranged from 100 to 500 mg/m2), the typical population estimates of nonspecific clearance (CL1), specific clearance (CL2) likely contributed by B cells or tumour burden, and central compartment volume of distribution (V1) were 0.14 l/day, 0.59 l/day, and 2.7 l, respectively. The estimated median terminal elimination half-life of rituximab was 22 days (range, 6.1 to 52 days). Baseline CD19-positive cell counts and size of measurable tumour lesions contributed to some of the variability in CL2 of rituximab in data from 161 patients given 375 mg/m2 as an intravenous infusion for 4 weekly doses.
Patients with higher CD19-positive cell counts or tumour lesions had a higher CL2. However, a large component of inter-individual variability remained for CL2 after correction for CD19-positive cell counts and tumour lesion size. V1 varied by body surface area (BSA) and CHOP therapy. This variability in V1 (27.1% and 19.0%) contributed by the range in BSA (1.53 to 2.32 m2) and concurrent CHOP therapy, respectively, were relatively small. Age, gender and WHO performance status had no effect on the pharmacokinetics of rituximab. This analysis suggests that dose adjustment of rituximab with any of the tested covariates is not expected to result in a meaningful reduction in its pharmacokinetic variability.
Rituximab, administered as an intravenous infusion at a dose of 375 mg/m2 at weekly intervals for 4 doses to 203 patients with NHL naive to rituximab, yielded a mean Cmax following the fourth infusion of 486 μg/ml (range, 77.5 to 996.6 μg/ml). Rituximab was detectable in the serum of patients 3-6 months after completion of last treatment.
Upon administration of rituximab at a dose of 375 mg/m2 as an intravenous infusion at weekly intervals for 8 doses to 37 patients with NHL, the mean Cmax increased with each successive infusion, spanning from a mean of 243 μg/ml (range, 16-582 μg/ml) after the first infusion to 550 μg/ml (range, 171 - 1177 μg/ml) after the eighth infusion.
The pharmacokinetic profile of rituximab when administered as 6 infusions of 375 mg/m2 in combination with 6 cycles of CHOP chemotherapy was similar to that seen with rituximab alone.
Chronic lymphocytic leukaemia: Rituximab was administered as an IV infusion at a first-cycle dose of 375 mg/m2 increased to 500 mg/m2 each cycle for 5 doses in combination with fludarabine and cyclophosphamide in CLL patients. The mean Cmax (N=15) was 408 μg/ml (range, 97 - 764 μg/ml) after the fifth 500 mg/m2 infusion and the mean terminal half-life was 32 days (range, 14 - 62 days).
Granulomatosis with polyangiitis and microscopic polyangiitis: Based on the population pharmacokinetic analysis of data in 97 patients with granulomatosis with polyangiitis and microscopic polyangiitis who received 375 mg/m2 Rituximab once weekly for four doses, the estimated median terminal elimination half-life was 23 days (range, 9 to 49 days). Rituximab mean clearance and volume of distribution were 0.313 L/day (range, 0.116 to 0.726 L/day) and 4.50 L (range 2.25 to 7.39 L) respectively.
Toxicology: Preclinical safety data: Rituximab has shown to be highly specific to the CD20 antigen on B cells. Toxicity studies reported with rituximab in cynomolgus monkeys have shown no other effect than the expected pharmacological depletion of B cells in peripheral blood and in lymphoid tissue.
Developmental toxicity studies with rituximab have been performed in cynomolgus monkeys at dosages up to 100 mg/kg (treatment on gestation days 20-50) and have revealed no evidence of toxicity to the foetus due to rituximab. However, dose-dependent pharmacologic depletion of B cells in the lymphoid organs of the foetuses was observed, which persisted post natally and was accompanied by a decrease in IgG level in the newborn animals affected. B cell counts returned to normal in these animals within 6 months of birth and did not compromise the reaction to immunization.
Standard tests to investigate mutagenicity have not been carried out, since such tests are not relevant for this molecule. No long-term animal studies have been performed to establish the carcinogenic potential of rituximab.
Specific studies to determine the effects of rituximab on fertility have not been performed. In general toxicity studies in cynomolgus monkeys no deleterious effects on reproductive organs in males or females were observed.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in