Epiven

Epiven

gabapentin

Manufacturer:

Prosweal Healthcare

Distributor:

Prosweal Healthcare
Full Prescribing Info
Contents
Gabapentin.
Description
Each capsule contains: Gabapentin 300 mg.
Excipients/Inactive Ingredients: It also contains the following excipients: Microcrystalline cellulose, Sodium starch glycollate, Polyvidone, Magnesium stearate, Talc, Ethanol, and Purified water.
Action
Anticonvulsant/Antiepileptic.
Pharmacology: Pharmacodynamics: Mechanism of Action: Gabapentin readily enters the brain and prevents seizures in a number of animal models of epilepsy. Gabapentin does not possess affinity for either GABA A or GABA B receptor nor does it alter the metabolism of GABA. It does not bind to other neurotransmitter receptors of the brain and does not interact with sodium channels. Gabapentin binds with high affinity to the α2δ (alpha-2-delta) subunit of voltage-gated calcium channels and it is proposed that binding to the α2δ subunit may be involved in gabapentin's anti-seizure effects in animals. Broad panel screening does not suggest any other drug targets other than α2δ.
Evidence from several pre-clinical models inform that the pharmacological activity of gabapentin may be mediated via binding to α2δ through a reduction in release of excitatory neurotransmitters in regions of the central nervous system. Such activity may underlie gabapentin's anti-seizure activity. The relevance of these actions of gabapentin to the anticonvulsant effects in humans remains to be established.
Gabapentin also displays efficacy in several pre-clinical animal pain models. Specific binding of gabapentin to the α2δ subunit is proposed to result in several different actions that may be responsible for analgesic activity in animal models. The analgesic activities of gabapentin may occur in the spinal cord as well as at higher brain centres through interactions with descending pain inhibitory pathways. The relevance of these pre-clinical properties to clinical action in humans is unknown.
Clinical efficacy and safety: A clinical trial of adjunctive treatment of partial seizures in paediatric subjects ranging in age from 3 to 12 years, showed a numerical but not statistically significant difference in the 50% responder rate in favour of the gabapentin group compared to placebo. Additional post-hoc analyses of the responder rates by age did not reveal a statistically significant effect of age, either as a continuous or dichotomous variable (age groups 3-5 and 6-12 years). The data from this additional post-hoc analysis are summarised in the table as follows: (See Table 1.)

Click on icon to see table/diagram/image

Pharmacokinetics: Absorption: Following oral administration, peak plasma gabapentin concentrations are observed within 2 to 3 hours. Gabapentin bioavailability (fraction of dose absorbed) tends to decrease with increasing dose. Absolute bioavailability of a 300 mg capsule is approximately 60%. Food, including a high-fat diet, has no clinically significant effect on gabapentin pharmacokinetics.
Gabapentin pharmacokinetics are not affected by repeated administration. Although plasma gabapentin concentrations were generally between 2 μg/mL and 20 μg/mL in clinical studies, such concentrations were not predictive of safety or efficacy. Pharmacokinetic parameters are given in Table 2. (See Table 2.)

Click on icon to see table/diagram/image

Distribution: Gabapentin is not bound to plasma proteins and has a volume of distribution equal to 57.7 litres. In patients with epilepsy, gabapentin concentrations in cerebrospinal fluid (CSF) are approximately 20% of corresponding steady-state trough plasma concentrations. Gabapentin is present in the breast milk of breast-feeding women.
Biotransformation: There is no evidence of gabapentin metabolism in humans. Gabapentin does not induce hepatic mixed function oxidase enzymes responsible for drug metabolism.
Elimination: Gabapentin is eliminated unchanged solely by renal excretion. The elimination half-life of gabapentin is independent of dose and averages 5 to 7 hours.
In elderly patients, and in patients with impaired renal function, gabapentin plasma clearance is reduced. Gabapentin elimination-rate constant, plasma clearance, and renal clearance are directly proportional to creatinine clearance.
Gabapentin is removed from plasma by haemodialysis. Dosage adjustment in patients with compromised renal function or undergoing haemodialysis is recommended (see DOSAGE & ADMINISTRATION).
Gabapentin pharmacokinetics in children were determined in 50 healthy subjects between the ages of 1 month and 12 years. In general, plasma gabapentin concentrations in children > 5 years of age are similar to those in adults when dosed on a mg/kg basis.
In a pharmacokinetic study in 24 healthy paediatric subjects aged between 1 month and 48 months, an approximately 30% lower exposure (AUC), lower Cmax and higher clearance per body weight have been observed in comparison to available reported data in children older than 5 years.
Linearity/non-linearity: Gabapentin bioavailability (fraction of dose absorbed) decreases with increasing dose which imparts non-linearity to pharmacokinetic parameters which include the bioavailability parameter (F) e.g. Ae%, CL/F, Vd/F. Elimination pharmacokinetics (pharmacokinetic parameters which do not include F such as CLr and T(1/2), are best described by linear pharmacokinetics. Steady state plasma gabapentin concentrations are predictable from single-dose data.
Indications/Uses
Epilepsy: Epiven 300 mg Capsule is indicated as adjunctive therapy in the treatment of partial seizures with and without secondary generalization in adults and children aged 6 years and above (see PHARMACOLOGY under ACTIONS).
Epiven 300 mg Capsule is indicated as monotherapy in the treatment of partial seizures with and without secondary generalization in adults and adolescents aged 12 years and above.
Treatment of peripheral neuropathic pain: Epiven 300 mg Capsule is indicated for the treatment of peripheral neuropathic pain such as painful diabetic neuropathy and post-herpetic neuralgia in adults.
Dosage/Direction for Use
Posology: For all indications a titration scheme for the initiation of therapy is described in Table 3, which is recommended for adults and adolescents aged 12 years and above. Dosing instructions for children under 12 years of age are provided under a separate sub-heading as follows. (See Table 3.)

Click on icon to see table/diagram/image

Discontinuation of gabapentin: In accordance with current clinical practice, if gabapentin has to be discontinued it is recommended this should be done gradually over a minimum of 1 week independent of the indication.
Epilepsy: Epilepsy typically requires long-term therapy. Dosage is determined by the treating physician according to individual tolerance and efficacy.
Adults and adolescents: In clinical trials, the effective dosing range was 900 to 3600 mg/day. Therapy may be initiated by titrating the dose as described in Table 2 or by administering 300 mg three times a day (TID) on Day 1. Thereafter, based on individual patient response and tolerability, the dose can be further increased in 300 mg/day increments every 2-3 days up to a maximum dose of 3600 mg/day. Slower titration of gabapentin dosage may be appropriate for individual patients. The minimum time to reach a dose of 1800 mg/day is one week, to reach 2400 mg/day is a total of 2 weeks, and to reach 3600 mg/day is a total of 3 weeks. Dosages up to 4800 mg/day have been well tolerated in long-term open-label clinical studies. The total daily dose should be divided in three single doses, the maximum time interval between the doses should not exceed 12 hours to prevent breakthrough convulsions.
Children aged 6 years and above: The starting dose should range from 10 to 15 mg/kg/day and the effective dose is reached by upward titration over a period of approximately three days. The effective dose of gabapentin in children aged 6 years and older is 25 to 35 mg/kg/day. Dosages up to 50 mg/kg/day have been well tolerated in a long-term clinical study. The total daily dose should be divided in three single doses, the maximum time interval between doses should not exceed 12 hours.
It is not necessary to monitor gabapentin plasma concentrations to optimize gabapentin therapy. Further, gabapentin may be used in combination with other antiepileptic medicinal products without concern for alteration of the plasma concentrations of gabapentin or serum concentrations of other antiepileptic medicinal products.
Peripheral neuropathic pain: Adults: The therapy may be initiated by titrating the dose as described in Table 3. Alternatively, the starting dose is 900 mg/day given as three equally divided doses. Thereafter, based on individual patient response and tolerability, the dose can be further increased in 300 mg/day increments every 2-3 days up to a maximum dose of 3600 mg/day. Slower titration of gabapentin dosage may be appropriate for individual patients. The minimum time to reach a dose of 1800 mg/day is one week, to reach 2400 mg/day is a total of 2 weeks, and to reach 3600 mg/day is a total of 3 weeks.
In the treatment of peripheral neuropathic pain such as painful diabetic neuropathy and post-herpetic neuralgia, efficacy and safety have not been examined in clinical studies for treatment periods longer than 5 months. If a patient requires dosing longer than 5 months for the treatment of peripheral neuropathic pain, the treating physician should assess the patient's clinical status and determine the need for additional therapy.
Instruction for all areas of indication: In patients with poor general health, i.e., low body weight, after organ transplantation etc., the dose should be titrated more slowly, either by using smaller dosage strengths or longer intervals between dosage increases.
Elderly (over 65 years of age): Elderly patients may require dosage adjustment because of declining renal function with age (see Table 4). Somnolence, peripheral oedema and asthenia may be more frequent in elderly patients.
Renal impairment: Dosage adjustment is recommended in patients with compromised renal function as described in Table 4 and/or those undergoing haemodialysis. Gabapentin 100 mg capsules can be used to follow dosing recommendations for patients with renal insufficiency. (See Table 4.)

Click on icon to see table/diagram/image

Use in patients undergoing haemodialysis: For anuric patients undergoing haemodialysis who have never received gabapentin, a loading dose of 300 to 400 mg, then 200 to 300 mg of gabapentin following each 4 hours of haemodialysis, is recommended. On dialysis-free days, there should be no treatment with gabapentin.
For renally impaired patients undergoing haemodialysis, the maintenance dose of gabapentin should be based on the dosing recommendations found in Table 4. In addition to the maintenance dose, an additional 200 to 300 mg dose following each 4-hour haemodialysis treatment is recommended.
Method of administration: For oral use. Gabapentin can be given with or without food and should be swallowed whole with sufficient fluid-intake (e.g. a glass of water).
Overdosage
Acute, life-threatening toxicity has not been observed with gabapentin overdoses of up to 49 g. Symptoms of the overdoses included dizziness, double vision, slurred speech, drowsiness, loss of consciousness, lethargy and mild diarrhoea. All patients recovered fully with supportive care. Reduced absorption of gabapentin at higher doses may limit drug absorption at the time of overdosing and, hence, minimize toxicity from overdoses.
Overdoses of gabapentin, particularly in combination with other CNS depressant medications, may result in coma.
Although gabapentin can be removed by haemodialysis, based on prior experience it is usually not required. However, in patients with severe renal impairment, haemodialysis may be indicated.
An oral lethal dose of gabapentin was not identified in mice and rats given doses as high as 8000 mg/kg. Signs of acute toxicity in animals included ataxia, laboured breathing, ptosis, hypoactivity, or excitation.
Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in DESCRIPTION.
Special Precautions
Drug Rash with Eosinophilia and Systemic Symptoms (DRESS): Severe, life-threatening, systemic hypersensitivity reactions such as Drug rash with eosinophilia and systemic symptoms (DRESS) have been reported in patients taking antiepileptic drugs including gabapentin (see ADVERSE REACTIONS).
It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Gabapentin should be discontinued if an alternative etiology for the signs or symptoms cannot be established.
Anaphylaxis: Gabapentin can cause anaphylaxis. Signs and symptoms in reported cases have included difficulty breathing, swelling of the lips, throat, and tongue, and hypotension requiring emergency treatment. Patients should be instructed to discontinue gabapentin and seek immediate medical care should they experience signs or symptoms of anaphylaxis (see ADVERSE REACTIONS).
Suicidal ideation and behaviour: Suicidal ideation and behaviour have been reported in patients treated with antiepileptic agents in several indications. A meta-analysis of randomised placebo controlled trials of antiepileptic drugs has also shown a small increased risk of suicidal ideation and behaviour. The mechanism of this risk is not known and the available data do not exclude the possibility of an increased risk for gabapentin.
Therefore, patients should be monitored for signs of suicidal ideation and behaviours and appropriate treatment should be considered. Patients (and caregivers of patients) should be advised to seek medical advice should signs of suicidal ideation or behaviour emerge.
Acute pancreatitis: If a patient develops acute pancreatitis under treatment with gabapentin, discontinuation of gabapentin should be considered (see ADVERSE REACTIONS).
Seizures: Although there is no evidence of rebound seizures with gabapentin, abrupt withdrawal of anticonvulsants in epileptic patients may precipitate status epilepticus (see DOSAGE & ADMINISTRATION).
As with other antiepileptic medicinal products, some patients may experience an increase in seizure frequency or the onset of new types of seizures with gabapentin.
As with other anti-epileptics, attempts to withdraw concomitant anti-epileptics in treatment refractive patients on more than one antiepileptic, in order to reach gabapentin monotherapy have a low success rate.
Gabapentin is not considered effective against primary generalized seizures such as absences and may aggravate these seizures in some patients. Therefore, gabapentin should be used with caution in patients with mixed seizures including absences.
Gabapentin treatment has been associated with dizziness and somnolence, which could increase the occurrence of accidental injury (fall). There have also been post-marketing reports of confusion, loss of consciousness and mental impairment. Therefore, patients should be advised to exercise caution until they are familiar with the potential effects of the medication.
Concomitant use with opioids: Patients who require concomitant treatment with opioids should be carefully observed for signs of central nervous system (CNS) depression, such as somnolence, sedation and respiratory depression. Patients who use gabapentin and morphine concomitantly may experience increases in gabapentin concentrations. The dose of gabapentin or opioids should be reduced appropriately (see INTERACTIONS).
Respiratory depression: Gabapentin has been associated with severe respiratory depression. Patients with compromised respiratory function, respiratory or neurological disease, renal impairment, concomitant use of CNS depressants and the elderly might be at higher risk of experiencing this severe adverse reaction. Dose adjustments might be necessary in these patients.
Abuse and dependence: Cases of abuse and dependence have been reported in the post-marketing database. Carefully evaluate patients for a history of drug abuse and observe them for possible signs of gabapentin abuse e.g. drug-seeking behaviour, dose escalation, development of tolerance.
Laboratory tests: False positive readings may be obtained in the semi-quantitative determination of total urine protein by dipstick tests. It is therefore recommended to verify such a positive dipstick test result by methods based on a different analytical principle such as the Biuret method, turbidimetric or dye binding methods, or to use these alternative methods from the beginning.
Use in Children: The effects of long-term (greater than 36 weeks) gabapentin therapy on learning, intelligence, and development in children and adolescents have not been adequately studied. The benefits of prolonged therapy must therefore be weighed against the potential risks of such therapy.
Use in the Elderly: No systematic studies in patients 65 years or older have been conducted with gabapentin. In one double blind study in patients with neuropathic pain, somnolence, peripheral oedema and asthenia occurred in a somewhat higher percentage in patients aged 65 years or above, than in younger patients.
Apart from these findings, clinical investigations in this age group do not indicate an adverse event profile different from that observed in younger patients.
Use In Pregnancy & Lactation
Pregnancy: Risk related to epilepsy and antiepileptic medicinal products in general: The risk of birth defects is increased by a factor of 2 - 3 in the offspring of mothers treated with an antiepileptic medicinal product. Most frequently reported are cleft lip, cardiovascular malformations and neural tube defects. Multiple antiepileptic drug therapy may be associated with a higher risk of congenital malformations than monotherapy, therefore it is important that monotherapy is practised whenever possible. Specialist advice should be given to women who are likely to become pregnant or who are of childbearing potential and the need for antiepileptic treatment should be reviewed when a woman is planning to become pregnant. No sudden discontinuation of antiepileptic therapy should be undertaken as this may lead to breakthrough seizures, which could have serious consequences for both mother and child. Developmental delay in children of mothers with epilepsy has been observed rarely. It is not possible to differentiate if the developmental delay is caused by genetic, social factors, maternal epilepsy or the antiepileptic therapy.
Risk related to gabapentin: Gabapentin crosses the human placenta.
There are no or limited amount of data from the use of gabapentin in pregnant women.
Studies in animals have shown reproductive toxicity. The potential risk for humans is unknown. Gabapentin should not be used during pregnancy unless the potential benefit to the mother clearly outweighs the potential risk to the foetus.
No definite conclusion can be made as to whether gabapentin is causally associated with an increased risk of congenital malformations when taken during pregnancy, because of epilepsy itself and the presence of concomitant antiepileptic medicinal products during each reported pregnancy.
Lactation: Gabapentin is excreted in human milk. Because the effect on the breast-fed infant is unknown, caution should be exercised when gabapentin is administered to a breast-feeding mother. Gabapentin should be used in breast-feeding mothers only if the benefits clearly outweigh the risks.
Fertility: There is no effect on fertility in animal studies.
Adverse Reactions
The adverse reactions observed during clinical studies conducted in epilepsy (adjunctive and monotherapy) and neuropathic pain have been provided in a single list as follows by class and frequency: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000). Where an adverse reaction was seen at different frequencies in clinical studies, it was assigned to the highest frequency reported.
Additional reactions reported from post-marketing experience are included as frequency Not known (cannot be estimated from the available data) in italics in the list as follows. Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness. (See Table 5.)

Click on icon to see table/diagram/image

Under treatment with gabapentin cases of acute pancreatitis were reported. Causality with gabapentin is unclear (see PRECAUTIONS).
In patients on haemodialysis due to end-stage renal failure, myopathy with elevated creatine kinase levels has been reported.
Respiratory tract infections, otitis media, convulsions and bronchitis were reported only in clinical studies in children. Additionally, in clinical studies in children, aggressive behaviour and hyperkinesias were reported commonly.
Drug Interactions
There are spontaneous and literature case reports of respiratory depression and/or sedation associated with gabapentin and opioid use. In some of these reports, the authors considered this a particular concern with the combination of gabapentin and opioids, especially in elderly patients.
In a study involving healthy volunteers (N=12), when a 60 mg controlled-release morphine capsule was administered 2 hours prior to a 600 mg gabapentin capsule, mean gabapentin AUC increased by 44% compared to gabapentin administered without morphine. Therefore, patients who require concomitant treatment with opioids should be carefully observed for signs of CNS depression, such as somnolence, sedation and respiratory depression and the dose of gabapentin or opioid should be reduced appropriately.
No interaction between gabapentin and phenobarbital, phenytoin, valproic acid, or carbamazepine has been observed.
Gabapentin steady-state pharmacokinetics are similar for healthy subjects and patients with epilepsy receiving these antiepileptic agents.
Co-administration of gabapentin with oral contraceptives containing norethindrone and/or ethinyl estradiol, does not influence the steady-state pharmacokinetics of either component.
Co-administration of gabapentin with antacids containing aluminium and magnesium, reduces gabapentin bioavailability up to 24%. It is recommended that gabapentin be taken at the earliest two hours following antacid administration.
Renal excretion of gabapentin is unaltered by probenecid.
A slight decrease in renal excretion of gabapentin that is observed when it is co-administered with cimetidine is not expected to be of clinical importance.
Storage
Store at temperatures not exceeding 30°C.
MIMS Class
Anticonvulsants
ATC Classification
N02BF01 - gabapentin ; Belongs to the class of gabapentinoids. Used to relieve pain and other conditions.
Presentation/Packing
Form
Epiven cap 300 mg
Packing/Price
30's
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in