Omee

Omee Drug Interactions

omeprazole

Manufacturer:

Furen Pharma

Distributor:

Alkem Lab
Full Prescribing Info
Drug Interactions
Effects of omeprazole on the pharmacokinetics of other active substances: Active Substances with PH dependent absorption: The decreased intragastric acidity during treatment with omeprazole might increase or decrease the absorption of active substances with a gastric pH dependent absorption.
Nelfinavir, atazanavir: The plasma levels of nelfinavir and atazanavir are decreased in case of co-administration with omeprazole. Concomitant administration of omeprazole with nelfinavir is contraindicated.
Co-administration of omeprazole (40 mg once daily) reduced mean nelvinavir exposure by ca. 40% and the mean exposure of the pharmacologically active metabolite M8 was reduced by ca. 75-90%. The interaction may also involve CYP2C19 inhibition.
Concomitant administration of omeprazole with atazanavir is not recommended. Concomitant administration of omeprazole (40 mg once daily) and atazanavir 300 mg/ritonavir 100 mg to healthy volunteers resulted in a 75% decrease of the atazanavir exposure. Increasing the atazanavir dose to 400 mg did not compensate for the impact of omeprazole on atazanavir exposure. The co-administration of omeprazole (20 mg once daily) with atazanavir 400 mg/ritonavir 100 mg to healthy volunteers resulted in a decrease of approximately 30% in the atazanavir exposure as compared to atazanavir 300 mg/ritonavir 100 mg once daily.
Digoxin: Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10%. Digoxin toxicity has been rarely reported. However, caution should be exercised when omeprazole is given at high doses in elderly patients. Therapeutic drug monitoring of digoxin should then be reinforced.
Clopidogrel: In a crossover clinical study, clopidogrel (300 mg loading dose followed by 75 mg/day) alone and with omeprazole (80 mg at the same time as clopidogrel) were administered for 5 days. The exposure to the active metabolite of clopidogrel was decreased by 46% (Day 1) and 42% (Day 5) when clopidogrel and omeprazole were administered together. Mean inhibition of platelet aggregation (IPA) was diminished by 47% (24 hours) and 30% (Day 5) when clopidogrel and omeprazole were administered together. In another study it was shown that administering clopidogrel and omeprazole at different times did not prevent their interaction that is likely to be driven by the inhibitory effect of omeprazole on CYP2C19. Inconsistent data on the clinical implications of this PK/PD interaction in terms of major cardiovascular events have been reported from observational and clinical studies.
Other active substances: The absorption of posaconazole, erlotinib, ketoconazole and itraconazole is significantly reduced and thus clinical efficacy may be impaired. For posaconazole and erlotinib concomitant used should be avoided.
Active substances metabolised by CYP2C19: Omeprazole is a moderate inhibitor of CYP2C19, the major omeprazole metabolising enzyme. Thus, the metabolism of concomitant active substances also metabolised by CYP2C19, may be decreased and the systemic exposure to these substances increased. Examples of such drugs are R-warfarin and other vitamin K antagonists, cilostazol, diazepam and phenytoin.
Cilostazol: Omeprazole, given in doses of 40 mg to healthy subjects in a cross-over study, increased Cmax and AUC for cilostazol by 18% and 26% respectively, and one of its active metabolites by 29% and 69% respectively.
Phenytoin: Monitoring phenytoin plasma concentration is recommended during the first two weeks after initiating omeprazole treatment and, if a phenytoin dose adjustment is made, monitoring and a further dose adjustment should occur upon ending omeprazole treatment.
Unknown mechanism: Saquinavir: Concomitant administration of omeprazole with saquinavir/ritonavir resulted in increased plasma levels up to approximately 70% for saquinavir associated with good tolerability in HIV-infected patients.
Tacrolimus: Concomitant administration of omeprazole has been reported to increase the serum levels of tacrolimus. A reinforced monitoring of tacrolimus concentrations as well as renal function (creatinine clearance) should be performed, and dosage of tacrolimus adjusted if needed.
Effects of other active substances on the pharmacokinetics of omeprazole: Inhibitors of CYP2C19 and/or CYP3A4: Since omeprazole is metabolised by CYP2C19 and CYP3A4, active substances known to inhibit CYP2C19 or CYP3A4 (such as clarithromycin and voriconazole) may lead to increased omeprazole serum levels by decreasing omeprazole's rate of metabolism. Concomitant voriconazole treatment resulted in more than doubling of the omeprazole exposure. As high doses of omeprazole have been well-tolerated adjustment of the omeprazole dose is not generally required. However, dose adjustment should be considered in patients with severe hepatic impairment and if long-term treatment is indicated.
Inducers of CYP2C19 and/or CYP3A4: Active substances known to induce CYP2C19 or CYP3A4 or both (such as rifampicin and St John's wort) may lead to decreased omeprazole serum levels by increasing omeprazole's rate of metabolism.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in