Sirturo

Sirturo

bedaquiline

Manufacturer:

Kemwell Biopharma

Distributor:

DCH Auriga - Healthcare
/
Four Star

Marketer:

Janssen
Full Prescribing Info
Contents
Bedaquiline fumarate.
Description
Each tablet contains bedaquiline fumarate equivalent to 100 mg of bedaquiline.
Excipient with known effect: Each tablet contains 145 mg of lactose (as monohydrate).
Excipients/Inactive Ingredients: Lactose monohydrate; Maize starch; Hypromellose; Polysorbate 20; Microcrystalline cellulose; Croscarmellose sodium; Silica, colloidal anhydrous; Magnesium stearate.
Action
Pharmacotherapeutic group: Antimycobacterials, drugs for treatment of tuberculosis. ATC code: J04AK05.
Pharmacology: Pharmacodynamics: Mechanism of action: Bedaquiline is a diarylquinoline. Bedaquiline specifically inhibits mycobacterial ATP (adenosine 5'-triphosphate) synthase, an essential enzyme for the generation of energy in Mycobacterium tuberculosis. The inhibition of ATP synthase leads to bactericidal effects for both replicating and non-replicating tubercle bacilli.
Pharmacodynamic effects: Bedaquiline has activity against Mycobacterium tuberculosis with a minimal inhibitory concentration (MIC) for drug-sensitive as well as drug-resistant strains (multi-drug resistant including pre-extensively drug resistant strains, extensively drug resistant strains) in the range of ≤ 0.008-0.12 mg/l. The N-monodesmethyl metabolite (M2) is not thought to contribute significantly to clinical efficacy given its lower average exposure (23% to 31%) in humans and lower antimycobacterial activity (3- to 6-fold lower) compared to the parent compound.
The intracellular bactericidal activity of bedaquiline in primary peritoneal macrophages and in a macrophage-like cell line was greater than its extracellular activity. Bedaquiline is also bactericidal against dormant (non-replicating) tubercle bacilli. In the mouse model for TB infection, bedaquiline has demonstrated bactericidal and sterilizing activities.
Bedaquiline is bacteriostatic for many non-tuberculous mycobacterial species. Mycobacterium xenopi, Mycobacterium novocastrense, Mycobacterium shimoidei and non-mycobacterial species are considered inherently resistant to bedaquiline.
Pharmacokinetic/pharmacodynamic relationship: Within the concentration range achieved with the therapeutic dose, no pharmacokinetic/pharmacodynamic relationship was observed in patients.
Mechanisms of resistance: Acquired resistance mechanisms that affect bedaquiline MICs include mutations in the atpE gene, which codes for the ATP synthase target, and in the Rv0678 gene, which regulates the expression of the MmpS5-MmpL5 efflux pump. Target-based mutations generated in preclinical studies lead to 8- to 133-fold increases in bedaquiline MIC, resulting in MICs ranging from 0.25 to 4.0 mg/l. Efflux-based mutations have been seen in preclinical and clinical isolates. These lead to 2- to 8-fold increases in bedaquiline MICs, resulting in bedaquiline MICs ranging from 0.25 to 0.50 mg/l. Isolates with efflux-based mutations are also less susceptible to clofazimine.
However no clear relationship between increased post-baseline bedaquiline MICs and microbiologic outcomes was observed in the phase 2 trials where bedaquiline was given for 24 weeks, followed by continuation of the background regimen.
Susceptibility testing breakpoints: When available, the clinical microbiology laboratory should provide the physician with the results of in vitro susceptibility test results for antimicrobial medicinal products used in resident hospitals as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting a combination of antibacterial medicinal products for treatment.
Breakpoints: Minimal inhibitory concentration (MIC) breakpoints are as follows: Epidemiological Cut-Off (ECOFF) 0.25 mg/l; Clinical Breakpoints S ≤ 0.25 mg/l; R > 0.25 mg/l; S = susceptible; R = resistant.
Commonly susceptible species: Mycobacterium tuberculosis.
Inherently resistant organisms: Mycobacterium xenopi; Mycobacterium novocastrense; Mycobacterium shimoidei; Non-mycobacterial species.
Clinical efficacy and safety: The following definitions applies for resistance categories used: Multi-drug resistant Mycobacterium tuberculosis (MDRH&R-TB): isolate resistant to at least isoniazid and rifampicin, but susceptible to fluoroquinolones and second line injectable agents.
Pre-extensively drug resistant tuberculosis (pre-XDR-TB): isolate resistant to isoniazid, rifampicin, and either any fluoroquinolone or at least one second line injectable agent (but not to both a fluoroquinolone and a second line injectable agent).
Extensively drug resistant tuberculosis (XDR-TB): isolate resistant to isoniazid, rifampicin, any fluoroquinolone, and at least one second line injectable agent.
A Phase IIb, placebo-controlled, double-blind, randomised trial (C208) evaluated the antibacterial activity, safety, and tolerability of SIRTURO in newly diagnosed patients with sputum smear-positive pulmonary MDRH&R- and pre-XDR-TB. Patients received SIRTURO (n = 79) or placebo (n = 81) for 24 weeks, both in combination with a preferred 5-drug background regimen (BR) consisting of ethionamide, kanamycin, pyrazinamide, ofloxacin, and cycloserine/terizidone. After the 24-week investigational period, the background regimen was continued to complete 18 to 24 months of total multi-drug resistant Mycobacterium tuberculosis treatment. A final evaluation was conducted at Week 120. Main demographics were as follows: 63.1% were males, median age 34 years, 35% were Black, and 15% were HIV positive. Cavitation in one lung was seen in 58% of patients, and in both lungs in 16%. For patients with full characterisation of resistance status, 76% (84/111) were infected with an MDRH&R-TB strain and 24% (27/111) with a pre-XDR-TB strain.
SIRTURO was administered as 400 mg once daily for the first 2 weeks, and as 200 mg 3 times/week for the following 22 weeks.
The primary outcome parameter was the time to sputum culture conversion (i.e. the interval between the first SIRTURO intake and the first of two consecutive negative liquid cultures from sputum collected at least 25 days apart) during treatment with SIRTURO or placebo (median time to conversion was 83 days for the SIRTURO group, 125 days for the placebo group (hazard ratio, 95% CI: 2.44 [1.57; 3.80]), p < 0.0001).
In the SIRTURO group, no or only minor differences in time to culture conversion and culture conversion rates were observed between patients with pre-XDR-TB and patients with MDRH&R-TB.
Response rates at week 24 and week 120 (i.e. around 6 months after stopping all therapy) are presented in table 1. (See Table 1.)

Click on icon to see table/diagram/image

Study C209 evaluated the safety, tolerability, and efficacy of 24 weeks treatment with open-label SIRTURO as part of an individualized treatment regimen in 233 patients who were sputum smear positive within 6 months prior to screening. This study included patients of all three resistance categories (MDRH&R-, pre-XDR- and XDR-TB).
The primary efficacy endpoint was the time to sputum culture conversion during treatment with SIRTURO (median 57 days, for 205 patients with sufficient data). At week 24, sputum culture conversion was seen in 163/205 (79.5%) patients. Conversion rates at week 24 were highest (87.1%; 81/93) in patients with MDRH&R-TB, 77.3% (34/44) in pre-XDR-TB patients and lowest (54.1%; 20/37) in XDR-TB patients. Extent of resistance based on central laboratory drug susceptibility testing results was not available for 32 subjects in the mITT population. These subjects were excluded from the subgroup analysis by extent of resistance of Mycobacterium tuberculosis strain.
At week 120, sputum culture conversion was seen in 148/205 (72.2%) patients. Conversion rates at week 120 were highest (73.1%; 68/93) in patients with MDRH&R-TB, 70.5% (31/44) in pre-XDR-TB patients and lowest (62.2%; 23/37) in XDR-TB patients.
At both week 24 and week 120, responder rates were higher for patients on 3 or more active substances (in vitro) in their background regimen.
Of the 163 patients who were responders at week 24, 139 patients (85.3%) were still responders at week 120. Twenty-four of these 24-week responders (14.7%) were considered non-responders at week 120, of which 19 patients had prematurely discontinued the trial while being culture converted and 5 patients had experienced relapse. Of the 42 patients who were non-responders at week 24, confirmed culture conversion after week 24 (i.e., after bedaquiline dosing ended but the background regimen was continued) occurred in 9 patients (21.4%) and was maintained at week 120.
Pharmacokinetics: The pharmacokinetic properties of bedaquiline have been evaluated in adult healthy subjects and in adult multi-drug resistant tuberculosis-infected patients. Exposure to bedaquiline was lower in multi-drug resistant tuberculosis-infected patients than in healthy subjects.
Absorption: Maximum plasma concentrations (Cmax) are typically achieved at about 5 hours post-dose. Cmax and the area under the plasma concentration-time curve (AUC) increased proportionally up to the highest doses studied (700 mg single-dose and once daily 400 mg multiple doses). Administration of bedaquiline with food increased the relative bioavailability by about 2-fold compared to administration under fasted conditions. Therefore, bedaquiline should be taken with food to enhance its oral bioavailability.
Distribution: The plasma protein binding of bedaquiline is > 99.9% in all species tested, including human. The plasma protein binding of the N-monodesmethyl metabolite (M2) in humans is at least 99.8%. In animals, bedaquiline and its active N-monodesmethyl metabolite (M2) are extensively distributed to most tissues, however, brain uptake was low.
Biotransformation: CYP3A4 was the major CYP isoenzyme involved in vitro in the metabolism of bedaquiline and the formation of the N-monodesmethyl metabolite (M2).
In vitro, bedaquiline does not significantly inhibit the activity of any of the CYP450 enzymes tested (CYP1A2, CYP2A6, CYP2C8/9/10, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A4/5 and CYP4A) and does not induce CYP1A2, CYP2C9 or CYP2C19 activities.
Bedaquiline and M2 were not substrates of P-gp in vitro. Bedaquiline was a weak OCT1, OATP1B1 and OATP1B3 substrate in vitro, while M2 was not. Bedaquiline was not a substrate of MRP2 and BCRP in vitro. Bedaquiline and M2 did not inhibit the transporters P-gp, OATP1B1, OATP1B3, BCRP, OAT1, OAT3, OCT1, OCT2, MATE1 and MATE2 at clinically relevant concentrations in vitro. An in vitro study indicated a potential for bedaquiline to inhibit BCRP at the concentrations achieved in the intestine after oral administration. The clinical relevance is unknown.
Elimination: Based on the preclinical studies, the bulk of the administered dose is eliminated in faeces. The urinary excretion of unchanged bedaquiline was < 0.001% of the dose in clinical studies, indicating that renal clearance of unchanged active substance is insignificant. After reaching Cmax, bedaquiline concentrations decline tri-exponentially. The mean terminal
elimination half-life of both bedaquiline and the active N-monodesmethyl metabolite (M2) is about 5 months (ranging from 2 to 8 months). This long terminal elimination phase likely reflects slow release of bedaquiline and M2 from peripheral tissues.
Special populations: Hepatic impairment: A single-dose study of SIRTURO in 8 subjects with moderate hepatic impairment (Child-Pugh B) demonstrated exposure to bedaquiline and M2 (AUC672h) was 19% lower compared to healthy subjects. No dose adjustment is deemed necessary in patients with mild or moderate hepatic impairment. Bedaquiline has not been studied in patients with severe hepatic impairment (see Dosage & Administration).
Renal impairment: SIRTURO has mainly been studied in patients with normal renal function. Renal excretion of unchanged bedaquiline is insignificant (< 0.001%).
In a population pharmacokinetic analysis of tuberculosis patients treated with SIRTURO 200 mg three times a week, creatinine clearance (range: 40 to 227 ml/min) was not found to influence the pharmacokinetic parameters of bedaquiline. It is therefore not expected that mild or moderate renal impairment will have a clinically relevant effect on the exposure to bedaquiline. However, in patients with severe renal impairment (creatinine clearance < 30 ml/min) or end-stage renal disease requiring haemodialysis or peritoneal dialysis, bedaquiline concentrations may be increased due to alteration of active substance absorption, distribution, and metabolism secondary to renal dysfunction. As bedaquiline is highly bound to plasma proteins, it is unlikely that it will be significantly removed from plasma by haemodialysis or peritoneal dialysis.
Paediatric patients: The pharmacokinetics of SIRTURO in paediatric patients have not been evaluated.
Elderly patients: There is limited clinical data (n = 2) on the use of SIRTURO in tuberculosis patients aged 65 years and older.
In a population pharmacokinetic analysis of tuberculosis patients (age range 18 years to 68 years) treated with SIRTURO age was not found to influence the pharmacokinetics of bedaquiline.
Race: In a population pharmacokinetic analysis of tuberculosis patients treated with SIRTURO, exposure to bedaquiline was found to be lower in Black patients than in patients from other race categories. This low exposure was not considered to be clinically relevant as no clear relationship between exposure to bedaquiline and response has been observed in clinical trials. Furthermore, response rates in patients that completed the bedaquiline treatment period were comparable between different race categories in the clinical trials.
Gender: In a population pharmacokinetic analysis of tuberculosis patients treated with SIRTURO no clinically relevant difference in exposure between men and women were observed.
Toxicology: Preclinical safety data: Animal toxicology studies have been conducted with bedaquiline administration up to 3 months in mice, up to 6 months in rats, and up to 9 months in dogs. The plasma bedaquiline exposure (AUC) in rats and dogs was similar to that observed in humans. Bedaquiline was associated with effects in target organs which included monocytic phagocytic system (MPS), skeletal muscle, liver, stomach, pancreas and heart muscle.
All of these toxicities except effects on MPS were monitored clinically. In the MPS of all species, pigment-laden and/or foamy macrophages were also seen in various tissues, consistent with phospholipidosis. The significance of phospholipidosis in humans is unknown. Most of the observed changes occurred after prolonged daily dosing and subsequent increases in plasma and tissue concentrations of the active substance. After treatment cessation, all indications of toxicity exhibited at least partial recovery to good recovery.
In a rat carcinogenicity study, bedaquiline, at the high doses of 20 mg/kg/day in males and 10 mg/kg/day in females, did not induce any treatment-related increases in tumour incidences. Compared to the exposures (AUC) observed in subjects with MDR-TB in the bedaquiline phase II trials, the exposures (AUC) in rats at high doses were similar in males and 2-fold higher in females for bedaquiline, and 3-fold higher in males and 2-fold higher in females for M2.
In vitro and in vivo genotoxicity tests indicated that bedaquiline did not have any mutagenic or clastogenic effects.
Bedaquiline had no effects on fertility when evaluated in female rats. Three of 24 male rats treated with high bedaquiline doses failed to produce offspring in the fertility study. Normal spermatogenesis and a normal amount of spermatozoa in the epidydimides were noted in these animals. No structural abnormalities in the testes and epididymides were seen after up to 6-months of bedaquiline treatment. No relevant bedaquiline-related effects on developmental toxicity parameters were observed in rats and rabbits. The corresponding plasma exposure (AUC) was 2-fold higher in rats compared to humans. In the rat, no adverse effects were observed in a pre- and post-natal development study at maternal plasma exposure (AUC) similar to humans and exposure in the offspring 3-fold higher than in adult humans. There was no effect of maternal treatment with bedaquiline at any dose level on sexual maturation, behavioural development, mating performance, fertility or reproductive capacity of the F1 generation animals. Body weight decreases in pups were noted in high dose groups during the lactation period after exposure to bedaquiline via milk and were not a consequence of in utero exposure. Concentrations of bedaquiline in milk were 6- to 12-fold higher that the maximum concentration observed in maternal plasma.
Environmental Risk Assessment (ERA): Environmental risk assessment studies have shown that bedaquiline has the potential to be persistent, bioaccumulative and toxic to the environment (see Cautions for Usage).
Indications/Uses
SIRTURO is indicated for use as part of an appropriate combination regimen for pulmonary multidrug-resistant tuberculosis (MDR-TB) in adult patients when an effective treatment regimen cannot otherwise be composed for reasons of resistance or tolerability.
See Dosage & Administration, Precautions and Pharmacology: Pharmacodynamics under Actions.
Consideration should be given to official guidance on the appropriate use of antibacterial agents.
Dosage/Direction for Use
Treatment with SIRTURO should be initiated and monitored by a physician experienced in the management of multi-drug resistant Mycobacterium tuberculosis.
SIRTURO should be used in combination with at least three medicinal products to which the patient's isolate has been shown to be susceptible in vitro. Treatment with the other agents in the regimen should continue after completion of treatment with SIRTURO. If in vitro testing results are unavailable, treatment may be initiated with SIRTURO in combination with at least four medicinal products to which the patient's isolate is likely to be susceptible. Refer to the Summary of Product Characteristics of the medicinal products used in combination with SIRTURO for their specific dosing recommendations.
It is recommended that SIRTURO is administered by directly observed therapy (DOT).
The recommended dosage is: Weeks 1-2: 400 mg (4 tablets of 100 mg) once daily.
Weeks 3-24: 200 mg (2 tablets of 100 mg) three times per week (with at least 48 hours between doses).
The total duration of treatment with SIRTURO is 24 weeks. Data on longer treatment duration is very limited. In patients with extensive drug resistance, where SIRTURO is considered necessary beyond 24 weeks to obtain a curative treatment, a longer duration of therapy may be considered only on a case by case basis and under close safety surveillance (see Precautions and Adverse Reactions).
Missed doses: Patients should be advised to take SIRTURO exactly as prescribed and to complete the full course of therapy.
If a dose is missed during the first two weeks of treatment, patients should not make up the missed dose, but should continue the usual dosing schedule.
If a dose is missed from week three onwards, patients should take the missed dose of 200 mg as soon as possible and then resume the three times a week regimen.
Elderly population (≥ 65 years of age): There is limited clinical data (n = 2) on the use of SIRTURO in elderly patients.
Hepatic impairment: No dose adjustment is necessary for SIRTURO in patients with mild or moderate hepatic impairment (see Pharmacology: Pharmacokinetics under Actions). SIRTURO should be used with caution in patients with moderate hepatic impairment (see Pharmacology: Pharmacokinetics under Actions). SIRTURO has not been studied in patients with severe hepatic impairment and is not recommended in this population.
Renal impairment: No dose adjustment is required in patients with mild or moderate renal impairment. In patients with severe renal impairment (creatinine clearance < 30 ml/min) or end-stage renal disease requiring haemodialysis or peritoneal dialysis, SIRTURO should be used with caution (see Pharmacology: Pharmacokinetics under Actions).
Paediatric population: The safety and efficacy of SIRTURO in children aged < 18 years have not yet been established.
No data are available.
Method of administration: SIRTURO should be taken orally with food, as administration with food increases oral bioavailability by about 2-fold (see Pharmacology: Pharmacokinetics under Actions). SIRTURO tablets should be swallowed whole with water.
Overdosage
Cases of intentional or accidental acute overdose with bedaquiline were not reported during clinical trials. In a study in 44 healthy subjects receiving a single 800 mg dose of SIRTURO, adverse reactions were consistent with those observed in clinical studies at the recommended dose (see Adverse Reactions).
There is no experience with the treatment of acute overdose with SIRTURO. General measures to support basic vital functions including monitoring of vital signs and electrocardiogram (QT interval) monitoring should be taken in case of deliberate or accidental overdose. Removal of unabsorbed bedaquiline may be aided by the administration of activated charcoal. Since bedaquiline is highly protein-bound, dialysis is not likely to significantly remove bedaquiline from plasma. Clinical monitoring should be considered.
Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in Description.
Special Precautions
There are no data on treatment with SIRTURO longer than 24 weeks within the clinical studies C208 and C209 (see Pharmacology: Pharmacodynamics under Actions).
There are no clinical data on the use of SIRTURO to treat: extra-pulmonary tuberculosis (e.g. central nervous system, bone); infections due to mycobacterial species other than Mycobacterium tuberculosis; latent infection with Mycobacterium tuberculosis.
There are no clinical data on the use of SIRTURO as part of combination regimens used to treat drug-susceptible Mycobacterium tuberculosis.
Mortality: In the 120-week C208 trial where SIRTURO was administered for 24 weeks in combination with a background regimen, more deaths occurred in the SIRTURO treatment group than in the placebo group (see Adverse Reactions). The imbalance in deaths is unexplained; no evidence has been found for a causal relationship with SIRTURO treatment. For additional information on deaths in the C209 trial, see Adverse Reactions.
Cardiovascular safety: Bedaquiline prolongs the QTc interval. An electrocardiogram should be obtained before initiation of treatment and at least monthly after starting treatment with bedaquiline. Serum potassium, calcium, and magnesium should be obtained at baseline and corrected if abnormal. Follow-up monitoring of electrolytes should be performed if QT prolongation is detected (see Interactions and Adverse Reactions).
When bedaquiline is co-administered with other medicinal products that prolong the QTc interval, an additive or synergistic effect on QT prolongation cannot be excluded (see Interactions). Caution is recommended when prescribing bedaquiline concomitantly with medicinal products with a known risk of QT prolongation. In the event that co-administration of such medicinal products with bedaquiline is necessary, clinical monitoring including frequent electrocardiogram assessment is recommended.
In the event that co-administration of clofazimine with bedaquiline is necessary, clinical monitoring including frequent electrocardiogram assessment is recommended (see Interactions).
SIRTURO treatment initiation is not recommended in patients with the following, unless the benefits of bedaquiline are considered to outweigh the potential risks: Heart failure; QT interval as corrected by the Fridericia method (QTcF) > 450 ms (confirmed by repeat electrocardiogram); A personal or family history of congenital QT prolongation; A history of or ongoing hypothyroidism; A history of or ongoing bradyarrhythmia; A history of Torsade de Pointes; Concomitant administration of fluoroquinolone antibiotics that have a potential for significant QT prolongation (i.e., gatifloxacin, moxifloxacin and sparfloxacin); Hypokalemia.
SIRTURO treatment must be discontinued if the patient develops: Clinically significant ventricular arrhythmia; A QTcF interval of > 500 ms (confirmed by repeat electrocardiogram).
If syncope occurs, an electrocardiogram should be obtained to detect any QT prolongation.
Hepatic safety: Increases in transaminases or aminotransferase elevations accompanied by total bilirubin ≥ 2x ULN were seen in clinical trials during administration of SIRTURO with the background regimen (see Adverse Reactions). Patients should be monitored throughout the treatment course, since the increases in liver enzymes were slow to appear and increased gradually during the 24 weeks. Monitor symptoms and laboratory tests (ALT, AST, alkaline phosphatase, and bilirubin) at baseline, monthly while on treatment, and as needed. If AST or ALT exceeds 5 times the upper limit of normal then the regimen should be reviewed and SIRTURO and/or any hepatotoxic background medicinal product should be discontinued. Other hepatotoxic medicinal products and alcohol should be avoided while on SIRTURO, especially in patients with diminished hepatic reserve.
Interactions with other medicinal products: CYP3A4 inducers: Bedaquiline is metabolised by CYP3A4. Co-administration of bedaquiline and medicinal products that induce CYP3A4 may decrease bedaquiline plasma concentrations and reduce its therapeutic effect. Co-administration of bedaquiline and moderate or strong CYP3A4 inducers used systemically should, therefore, be avoided (see Interactions).
CYP3A4 inhibitors: Co-administration of bedaquiline and moderate or strong CYP3A4 inhibitors may increase the systemic exposure to bedaquiline, which could potentially increase the risk of adverse reactions (see Interactions). Therefore, the combination of bedaquiline and moderate or strong CYP3A4 inhibitors used systemically for more than 14 consecutive days should be avoided. If co-administration is required, more frequent electrocardiogram monitoring and monitoring of transaminases is recommended.
Patients infected with human immunodeficiency virus (HIV): There are no clinical data on the safety and efficacy of bedaquiline when co-administered with antiretroviral agents.
There are only limited clinical data on the efficacy of bedaquiline in HIV-infected patients not receiving antiretroviral (ARV) therapy. Those patients studied all had CD4+ cell counts greater than 250 x 106 cells/l (N = 22; see Interactions).
Lactose intolerance and lactase deficiency: SIRTURO contains lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.
Effects on ability to drive and use machines: Bedaquiline has minor influence on the ability to drive and use machines. Adverse reactions, such as dizziness, may affect the ability to drive or use machines. Patients should be advised not to drive or operate machinery if they experience dizziness while taking SIRTURO.
Use In Pregnancy & Lactation
Pregnancy: There are limited data on the use of SIRTURO in pregnant women. At clinically relevant exposures, animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see Pharmacology: Toxicology: Preclinical safety data under Actions).
As a precautionary measure, it is recommended to avoid the use of SIRTURO during pregnancy unless the benefit of therapy is considered to outweigh the risks.
Breastfeeding: It is not known whether bedaquiline or its metabolites are excreted in human milk.
In rats, concentrations of bedaquiline in milk were 6- to 12-fold higher than the maximum concentration observed in maternal plasma. Body weight decreases in pups were noted in high dose groups during the lactation period (see Pharmacology: Toxicology: Preclinical safety data under Actions).
Because of the potential for adverse reactions in breastfed infants, a decision must be made whether to discontinue breast-feeding or to discontinue/abstain from SIRTURO therapy taking into account the benefit of breast-feeding for the infant and the benefit of therapy for the mother.
Fertility: No human data on the effect of bedaquiline on fertility are available. In female rats, there was no effect on mating or fertility with bedaquiline treatment, however some effects were observed in male rats (see Pharmacology: Toxicology: Preclinical safety data under Actions).
Adverse Reactions
Summary of the safety profile: Adverse drug reactions for SIRTURO were identified from pooled Phase IIb clinical trial data (both controlled and uncontrolled) containing 335 patients who received SIRTURO in combination with a background regimen of tuberculosis medicinal products. The basis of assessment of causality between the adverse drug reactions and SIRTURO was not restricted to these trials, but also on review of the pooled Phase I and Phase IIa safety data. The most frequent adverse drug reactions (> 10.0% of patients) during treatment with SIRTURO in the controlled trials were nausea (35.3% in the SIRTURO group vs 25.7% in the placebo group), arthralgia (29.4% vs 20.0%), headache (23.5% vs 11.4%), vomiting (20.6% vs 22.9%) and dizziness (12.7% vs 11.4%). Refer to the Summary of Product Characteristics of the medicinal products used in combination with SIRTURO for their respective adverse reactions.
Tabulated list of adverse reactions: Adverse drug reactions to SIRTURO reported from controlled trials in 102 patients treated with SIRTURO are presented in the table as follows.
Adverse drug reactions are listed by system organ class (SOC) and frequency. Frequency categories are defined as follows: very common (≥ 1/10), common (≥ 1/100 to < 1/10) and uncommon (≥ 1/1,000 to < 1/100). (See Table 2.)

Click on icon to see table/diagram/image

Description of selected adverse events: Deaths: In the randomised phase IIb study (C208, stage 2) a higher rate of deaths was seen in the SIRTURO treatment group (12.7%;10/79 patients) compared to the placebo treatment group (3.7%; 3/81 patients). One death in the SIRTURO group and one death in the placebo group were reported after the week 120 window. In the SIRTURO group, all of the five deaths due to tuberculosis occurred in patients whose sputum culture status at last visit was 'not converted'. The causes of death in the remaining SIRTURO subjects were alcohol poisoning, hepatitis/hepatic cirrhosis, septic shock/peritonitis, cerebrovascular accident and motor vehicle accident. One of the ten deaths in the SIRTURO group (due to alcohol poisoning) occurred during the 24-week treatment period. The other nine deaths among those treated with SIRTURO occurred after completion of treatment with this agent (range 86-911 days post-SIRTURO; median 344 days). The observed imbalance in deaths between the two treatment groups is unexplained. No discernible pattern between death and sputum culture conversion, relapse, sensitivity to other medicinal products used to treat tuberculosis, human immunodeficiency virus status, or severity of disease could be observed. During the trial, there was no evidence of antecedent significant QT prolongation or clinically significant dysrhythmia in any of the patients that died.
In the Phase IIb, open-label study (C209), 6.9% (16/233) patients died. The most common cause of death as reported by the investigator was tuberculosis (9 patients). All but one patients who died of tuberculosis had not converted or had relapsed. The causes of death in the remaining patients varied.
Description of selected adverse reactions: Cardiovascular: In the controlled Phase IIb study (C208), mean increases from baseline values in QTcF were observed from the first on-treatment assessment onwards (9.9 ms at week 1 for SIRTURO and 3.5 ms for placebo). The largest mean increase from baseline values in QTcF during the 24 weeks of SIRTURO treatment was 15.7 ms (at week 18). After the end of SIRTURO treatment (i.e. after week 24), QTcF increases in the SIRTURO group gradually became less pronounced. The largest mean increase from baseline values in QTcF in the placebo group during the first 24 weeks was 6.2 ms (also at week 18) (see Precautions).
In the Phase IIb, open label study (C209), where patients with no treatment options received other QT-prolonging medicinal products used to treat tuberculosis, including clofazimine, concurrent use with SIRTURO resulted in additive QT prolongation, proportional to the number of QT prolonging medicinal products in the treatment regimen.
Patients receiving SIRTURO alone with no other QT prolonging medicinal product developed a maximal mean QTcF increase over baseline of 23.7 ms with no QT duration in excess of 480 ms, whereas patients with at least 2 other QT prolonging medicinal products developed a maximal mean QTcF prolongation of 30.7 ms over baseline, resulting in a QTcF duration in excess of 500 ms in one patient.
There were no documented cases of Torsade de Pointes in the safety database (see Precautions). See Interactions, QT interval and concomitant clofazimine use, for further information regarding patients using clofazimine concomitantly.
Increased transaminases: In study C208 (stage 1 and 2), aminotransferase elevations of at least 3 x ULN developed more frequently in the SIRTURO treatment group (11/102 [10.8%] versus 6/105 [5.7%]) in the placebo treatment group. In the SIRTURO treatment group, the majority of these increases occurred throughout the 24 weeks of treatment and were reversible. During the investigational phase in Stage 2 of study C208, increased aminotransferases were reported in 7/79 (8.9%) patients in the SIRTURO treatment group compared to 1/81 (1.2%) in the placebo treatment group.
Reporting of suspected adverse reactions: Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions.
Drug Interactions
The elimination of bedaquiline has not been fully characterised in vivo. CYP3A4 is the major CYP isoenzyme involved in vitro in the metabolism of bedaquiline and the formation of the N-monodesmethyl metabolite (M2). Urinary excretion of bedaquiline is negligible. Bedaquiline and M2 are not substrates or inhibitors of P-glycoprotein.
CYP3A4 inducers: Bedaquiline exposure may be reduced during co-administration with inducers of CYP3A4.
In an interaction study of single-dose bedaquiline and once daily rifampicin (strong inducer) in healthy subjects, the exposure (AUC) to bedaquiline was reduced by 52% [90% CI (-57; -46)]. Due to the possibility of a reduction of the therapeutic effect of bedaquiline due to a decrease in systemic exposure, co-administration of bedaquiline and moderate or strong CYP3A4 inducers (e.g. efavirenz, etravirine, rifamycins including rifampicin, rifapentine and rifabutin, carbamazepine, phenytoin, St. John's wort (Hypericum perforatum)) used systemically should be avoided.
CYP3A4 inhibitors: Bedaquiline exposure may be increased during co-administration with inhibitors of CYP3A4.
The short-term co-administration of bedaquiline and ketoconazole (potent CYP3A inhibitor) in healthy subjects increased the exposure (AUC) to bedaquiline by 22% [90% CI (12; 32)]. A more pronounced effect on bedaquiline may be observed during prolonged co-administration of ketoconazole or other inhibitors of CYP3A.
There are no safety data from bedaquiline multiple dose trials which utilised a dose higher than the indicated dose. Due to the potential risk of adverse reactions due to an increase in systemic exposure, prolonged co-administration of bedaquiline and moderate or strong CYP3A4 inhibitors (e.g. ciprofloxacin, erythromycin, fluconazole, clarithromycin, ketoconazole, ritonavir) used systemically for more than 14 consecutive days should be avoided. If co-administration is required, more frequent electrocardiogram monitoring and monitoring of transaminases is recommended (see Precautions).
Other antituberculosis medicinal products: The short-term co-administration of bedaquiline with isoniazid/pyrazinamide in healthy subjects did not result in clinically relevant changes in the exposure (AUC) to bedaquiline, isoniazid or pyrazinamide. No dose-adjustment of isoniazid or pyrazinamide is required during co-administration with bedaquiline.
In a placebo-controlled clinical study in patients with multi-drug resistant Mycobacterium tuberculosis, no major impact of co-administration of bedaquiline on the pharmacokinetics of ethambutol, kanamycin, pyrazinamide, ofloxacin or cycloserine was observed.
Antiretroviral medicinal products: In an interaction study of single-dose bedaquiline and multiple-dose lopinavir/ritonavir, exposure (AUC) to bedaquiline was increased by 22% [90% CI (11; 34)]. A more pronounced effect on bedaquiline plasma exposures may be observed during prolonged co-administration with lopinavir/ritonavir. This increase is likely due to ritonavir. If the benefit outweighs the risk, SIRTURO may be used with caution when co-administered with lopinavir/ritonavir. Increases in plasma exposure to bedaquiline would be expected when it is co-administered with other ritonavir-boosted HIV protease inhibitors.
Co-administration of single-dose bedaquiline and multiple-dose nevirapine did not result in clinically relevant changes in the exposure to bedaquiline. Clinical data on co-administration of bedaquiline and antiretroviral agents in patients co-infected with human immunodeficiency virus and multi-drug resistant Mycobacterium tuberculosis are not available (see Precautions).
Efavirenz is a moderate inducer of CYP3A activity and co-administration with bedaquiline may result in reduced bedaquiline exposure and loss of activity, and is, therefore, not recommended.
QT interval prolonging medicinal products: There is limited information available on the potential for a pharmacodynamic interaction between bedaquiline and medicinal products that prolong the QT interval. In an interaction study of bedaquiline and ketoconazole, a greater effect on QTc was observed after repeated dosing with bedaquiline and ketoconazole in combination than after repeated dosing with the individual medicinal products. An additive or synergistic effect on QT prolongation of bedaquiline when co-administered with other medicinal products that prolong the QT interval cannot be excluded and frequent monitoring is recommended (see Precautions).
QT interval and concomitant clofazimine use: In an open label Phase IIb trial, mean increases in QTcF were larger in the 17 subjects who were using concomitant clofazimine at week 24 (mean change from reference of 31.9 ms) than in subjects who were not using concomitant clofazimine at week 24 (mean change from reference of 12.3 ms) (see Precautions).
Paediatric population: Interaction studies have only been performed in adults.
Caution For Usage
Incompatibilities: Not applicable.
Special precautions for disposal: This medicinal product may pose a risk to the environment.
Any unused product or waste material should be disposed of in accordance with local requirements (see Pharmacology: Toxicology: Preclinical safety data under Actions).
Storage
This medicinal product does not require any special temperature storage conditions.
Store in the original container or package in order to protect from light.
MIMS Class
Anti-TB Agents
ATC Classification
J04AK05 - bedaquiline ; Belongs to the class of other drugs used in the systemic treatment of tuberculosis.
Presentation/Packing
Form
Sirturo tab 100 mg
Packing/Price
188's
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in